
Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Synthesis Modulo Recursive Functions
based on a paper of E. Kneuss, V. Kuncak, I. Kuraj, P. Suter

Lukas Convent

January 14, 2016

1

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

What we want

Given a specification

1def split (xs: List): (List, List) =
2choose {(r: (List, List)) =>
3content(xs) == content(r._1) ++ content(r._2)
4}

... we want a synthesized program as a solution.

2

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

What we rely on

• Leon Verifier which reasons over user-defined recursive
functions. Given a formula, the procedure is

• Complete for counterexamples:
size(xs) < 3 Counterexample 1::2::3::nil

• Complete for proofs for certain classes of formulas:
size(1::2::xs) > 1

• Deductive Synthesis Framework

3

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

What we rely on

• Leon Verifier which reasons over user-defined recursive
functions. Given a formula, the procedure is

• Complete for counterexamples:
size(xs) < 3 Counterexample 1::2::3::nil

• Complete for proofs for certain classes of formulas:
size(1::2::xs) > 1

• Deductive Synthesis Framework

3

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Structure

Deductive Framework

1. Recursion Rule

2. Symbolic Term Exploration Rule

3. Condition Abduction Rule

Final assembly

4

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Deductive Synthesis Framework

We have seen this before:

Synthesis Problem

Ja 〈φ〉 xK
• a Set of input variables

• φ Synthesis predicate

• x Set of output variables

Synthesis Problem Solution

Ja 〈φ〉 xK ` 〈P | T 〉
• P Precondition

• T Program term

5

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Deductive Synthesis Framework

We have seen this before:

Synthesis Problem

Ja 〈φ〉 xK
• a Set of input variables

• φ Synthesis predicate

• x Set of output variables

Synthesis Problem Solution

Ja 〈φ〉 xK ` 〈P | T 〉
• P Precondition

• T Program term

5

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Deductive Synthesis Framework

... now we add a Path condition:

Synthesis Problem

Ja 〈Π . φ〉 xK
• a Set of input variables

• φ Synthesis predicate

• x Set of output variables

• Π Path condition

Synthesis Problem Solution

Ja 〈Π . φ〉 xK ` 〈P | T 〉
• P Precondition

• T Program term

6

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Inference rules

We have already seen lots of inference rules:

...

We will extend our system by three new types of rules.

1.
...
... Recursion Rule

2. ... Symb. Term Expl. Rule

3. ... Condition Abduction Rule

7

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Recursion Rule (1)

1. Typically, a recursive function involves decreasing the
argument of an inductive data type (e. g. List)

2. We use a generic schema to solve the problem for each case:

1 def rec(a0, a) =
2 require(Π2)
3 a0 match {

4 case Nil ⇒ T 1

5 case Cons(h, t) ⇒
6 lazy val r = rec(t, a)

7 T 2

8 }
9 ensuring (r ⇒ Φ[x � r])

8

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Recursion Rule (1)

1. Typically, a recursive function involves decreasing the
argument of an inductive data type (e. g. List)

2. We use a generic schema to solve the problem for each case:

1 def rec(a0, a) =
2 require(Π2)
3 a0 match {

4 case Nil ⇒ T 1

5 case Cons(h, t) ⇒
6 lazy val r = rec(t, a)

7 T 2

8 }
9 ensuring (r ⇒ Φ[x � r])

8

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Recursion Rule (2)

9

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Recursion Rule (2)

9

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Recursion Rule (2)

9

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Recursion Rule (2)

9

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Recursion Rule (2)

9

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Recursion Rule (2)

9

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Symbolic Term Exploration Rule

• Goal: Find terms consisting of constructors and function calls

• We use generators to look out for correct programs:

def genNat(): Nat =
if (?) 0 else 1 + genNat()

def genList(): List =
if (?) Nil else (Cons (genNat(), genList()))

• Assumption: Our generators will generate a solution
eventually.

10

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Symbolic Term Exploration Rule

• Goal: Find terms consisting of constructors and function calls

• We use generators to look out for correct programs:

def genNat(): Nat =
if (?) 0 else 1 + genNat()

def genList(): List =
if (?) Nil else (Cons (genNat(), genList()))

• Assumption: Our generators will generate a solution
eventually.

10

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Symbolic Term Exploration Rule

• Goal: Find terms consisting of constructors and function calls

• We use generators to look out for correct programs:

def genNat(): Nat =
if (?) 0 else 1 + genNat()

def genList(): List =
if (?) Nil else (Cons (genNat(), genList()))

• Assumption: Our generators will generate a solution
eventually.

10

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Discovering programs (1)

Given a synthesis problem Ja 〈φ〉 xK and a generator genX
matching the type of x ...

def genX(): X = if (?) ... else
if (?) ... else ...

1. Unroll the generator function up to an instantiation depth

2. Find a model such that φ is fulfilled, consisting of:

(a) a0 Some input for which the problem is solved
(b) b0 Determines the choices (?) of genX

3. If a model is found, try to falsify the program (fixing b := b0)

(a) If it can be falsified: Discard
(b) If it cannot be falsified: Success

11

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Discovering programs (1)

Given a synthesis problem Ja 〈φ〉 xK and a generator genX
matching the type of x ...

def genX(): X = if (?) ... else
if (?) ... else ...

1. Unroll the generator function up to an instantiation depth

2. Find a model such that φ is fulfilled, consisting of:

(a) a0 Some input for which the problem is solved
(b) b0 Determines the choices (?) of genX

3. If a model is found, try to falsify the program (fixing b := b0)

(a) If it can be falsified: Discard
(b) If it cannot be falsified: Success

11

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Discovering programs (1)

Given a synthesis problem Ja 〈φ〉 xK and a generator genX
matching the type of x ...

def genX(): X = if (?) ... else
if (?) ... else ...

1. Unroll the generator function up to an instantiation depth

2. Find a model such that φ is fulfilled, consisting of:

(a) a0 Some input for which the problem is solved
(b) b0 Determines the choices (?) of genX

3. If a model is found, try to falsify the program (fixing b := b0)

(a) If it can be falsified: Discard
(b) If it cannot be falsified: Success

11

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Discovering programs (1)

Given a synthesis problem Ja 〈φ〉 xK and a generator genX
matching the type of x ...

def genX(): X = if (?) ... else
if (?) ... else ...

1. Unroll the generator function up to an instantiation depth

2. Find a model such that φ is fulfilled, consisting of:

(a) a0 Some input for which the problem is solved
(b) b0 Determines the choices (?) of genX

3. If a model is found, try to falsify the program (fixing b := b0)

(a) If it can be falsified: Discard
(b) If it cannot be falsified: Success

11

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Discovering programs (2)

To speed up the process, we can first prune many terms from the
generator.

1. Compile the expression φ[x 7→ genX (b)]

2. Rapidly discard many candidate programs

3. Build a new pruned generator, then run the procedure from
before

12

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Discovering programs (2)

To speed up the process, we can first prune many terms from the
generator.

1. Compile the expression φ[x 7→ genX (b)]

2. Rapidly discard many candidate programs

3. Build a new pruned generator, then run the procedure from
before

12

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Discovering programs (2)

To speed up the process, we can first prune many terms from the
generator.

1. Compile the expression φ[x 7→ genX (b)]

2. Rapidly discard many candidate programs

3. Build a new pruned generator, then run the procedure from
before

12

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Discovering programs (2)

To speed up the process, we can first prune many terms from the
generator.

1. Compile the expression φ[x 7→ genX (b)]

2. Rapidly discard many candidate programs

3. Build a new pruned generator, then run the procedure from
before

12

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Example

13

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Example

13

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Example

13

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Example

13

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Example

13

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Example

13

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Example

13

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Condition Abduction Rule

• Goal: Synthesize recursive function bodies

• Typically, a recursive function consists of a top-level case
analysis

• Idea: Pick program terms, then ”abduce” their preconditions
until the whole input space is covered

14

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Condition Abduction Rule

• Goal: Synthesize recursive function bodies

• Typically, a recursive function consists of a top-level case
analysis

• Idea: Pick program terms, then ”abduce” their preconditions
until the whole input space is covered

14

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Synthesis Procedure

15

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Synthesis Procedure

15

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Synthesis Procedure

15

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Finding a condition for P

16

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Finding a condition for P

16

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Finding a condition for P

16

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Final assembly

• We have added three new rules which extend the deductive
framework

• Synthesis now consists of finding one inference tree for a
problem

• At any time, we can stop the synthesis process and use
intermediate results

17

Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Discussion

• What are use cases for these techniques, what are their limits?

• How can the generator functions best be designed?

• How can the search for a synthesis derivation best be
organized?

• Can ad-hoc interaction during synthesis with the user be
considered a strategy?

18

	Deductive Framework
	1. Recursion Rule
	2. Symbolic Term Exploration Rule
	3. Condition Abduction Rule
	Final assembly

