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What we want

Given a specification

1def split (xs: List): (List, List) =
2choose {(r: (List, List)) =>
3content(xs) == content(r._1) ++ content(r._2)
4}

... we want a synthesized program as a solution.
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What we rely on

• Leon Verifier which reasons over user-defined recursive
functions. Given a formula, the procedure is

• Complete for counterexamples:
size(xs) < 3  Counterexample 1::2::3::nil

• Complete for proofs for certain classes of formulas:
size(1::2::xs) > 1

• Deductive Synthesis Framework
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Structure

Deductive Framework

1. Recursion Rule

2. Symbolic Term Exploration Rule

3. Condition Abduction Rule

Final assembly

4



Deductive Framework 1. Recursion Rule 2. Symbolic Term Exploration Rule 3. Condition Abduction Rule Final assembly

Deductive Synthesis Framework

We have seen this before:

Synthesis Problem

Ja 〈φ〉 xK
• a Set of input variables

• φ Synthesis predicate

• x Set of output variables

Synthesis Problem Solution

Ja 〈φ〉 xK ` 〈P | T 〉
• P Precondition

• T Program term
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Deductive Synthesis Framework

... now we add a Path condition:

Synthesis Problem

Ja 〈Π . φ〉 xK
• a Set of input variables

• φ Synthesis predicate

• x Set of output variables

• Π Path condition

Synthesis Problem Solution

Ja 〈Π . φ〉 xK ` 〈P | T 〉
• P Precondition

• T Program term
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Inference rules

We have already seen lots of inference rules:

...

We will extend our system by three new types of rules.

1.
...
... Recursion Rule

2. ... Symb. Term Expl. Rule

3. ... Condition Abduction Rule
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Recursion Rule (1)

1. Typically, a recursive function involves decreasing the
argument of an inductive data type (e. g. List)

2. We use a generic schema to solve the problem for each case:

1 def rec(a0, a) =
2 require(Π2)
3 a0 match {

4 case Nil ⇒ T 1

5 case Cons(h, t) ⇒
6 lazy val r = rec(t, a)

7 T 2

8 }
9 ensuring (r ⇒ Φ[x � r])
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Recursion Rule (2)
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Recursion Rule (2)
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Recursion Rule (2)
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Symbolic Term Exploration Rule

• Goal: Find terms consisting of constructors and function calls

• We use generators to look out for correct programs:

def genNat(): Nat =
if (?) 0 else 1 + genNat()

def genList(): List =
if (?) Nil else (Cons (genNat(), genList()))

• Assumption: Our generators will generate a solution
eventually.
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Discovering programs (1)

Given a synthesis problem Ja 〈φ〉 xK and a generator genX
matching the type of x ...

def genX(): X = if (?) ... else
if (?) ... else ...

1. Unroll the generator function up to an instantiation depth

2. Find a model such that φ is fulfilled, consisting of:

(a) a0 Some input for which the problem is solved
(b) b0 Determines the choices (?) of genX

3. If a model is found, try to falsify the program (fixing b := b0)

(a) If it can be falsified: Discard
(b) If it cannot be falsified: Success
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Discovering programs (2)

To speed up the process, we can first prune many terms from the
generator.

1. Compile the expression φ[x 7→ genX (b)]

2. Rapidly discard many candidate programs

3. Build a new pruned generator, then run the procedure from
before
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Condition Abduction Rule

• Goal: Synthesize recursive function bodies

• Typically, a recursive function consists of a top-level case
analysis

• Idea: Pick program terms, then ”abduce” their preconditions
until the whole input space is covered
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Synthesis Procedure
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Synthesis Procedure
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Finding a condition for P
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Final assembly

• We have added three new rules which extend the deductive
framework

• Synthesis now consists of finding one inference tree for a
problem

• At any time, we can stop the synthesis process and use
intermediate results
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Discussion

• What are use cases for these techniques, what are their limits?

• How can the generator functions best be designed?

• How can the search for a synthesis derivation best be
organized?

• Can ad-hoc interaction during synthesis with the user be
considered a strategy?
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