Interactive Theorem Proving: An Intro to the Coq Proof Assistant

Presented by Lukas Convent and Prof. Dr. Martin Leucker as part of the *dependable software* course as taught at ISP in Lübeck in 2019.

Learning Goals

- Programming: Inductive Data Types and Recursive Functions
- Specifying: Encode Logical Formulas as Types
- Proving: Prove Logical Formulas about Programs

Outline

- 1. Introduction
- 2. Coq Programming
- 3. Propositions as Types

Introduction

Functional and Imperative Programs

Definition (Imperative Program)

An **imperative** program p describes a partial function on memory states: Given some initial state σ , the **execution** of p on σ either terminates with a final state σ' or it diverges. For example, the program $\mathbf{x} := 2 \star \mathbf{x}$ maps state $\sigma = \{x \mapsto 1, _ \mapsto 0\}$ to state $\sigma' = \{x \mapsto 2, _ \mapsto 0\}$

Definition (Functional Program)

A **functional** program f describes a partial function on values: Given some input value v, the **reduction** of the expression f(v)either terminates in a value v' or it diverges. For example, the program f(x) := 2 * x with 1 given as a value, resulting in the expression f(1), reduces to value 2

Program Verification

- We focus on verifying functional programs
- We do not limit ourselves though:
 - Imperative programs can be expressed as functional programs
 - The typical framework to prove properties about imperative programs is the Hoare calculus, which can be easily expressed in out framework

• Our framework is a functional language that allows to:

- Write useful programs
- Write specifications for these programs
- Prove these specifications
- Next: Recap on what it means to prove a logical statement (such as a specification)

Start simple: Propositional Logic

- Syntax
 - $\blacktriangleright \ \ \text{Formulas} \ \varphi, \psi := p \in AP \ | \ \bot \ | \ \varphi \to \psi$
 - Atomic propositions AP
 - (further connectives $\neg, \land, \lor, ...$ can be used as notation)

Start simple: Propositional Logic

- Syntax
 - $\blacktriangleright \ \ \text{Formulas} \ \varphi, \psi := p \in AP \ | \ \bot \ | \ \varphi \to \psi$
 - Atomic propositions AP
 - ▶ (further connectives ¬, ∧, ∨, ... can be used as notation)
- Semantics
 - Truth domain $T := \{0, 1\}$
 - Interpretations $v \in AP \rightarrow T$
 - Evaluation function

$$\begin{split} \llbracket p \rrbracket_v &:= v(p) \\ \llbracket \bot \rrbracket_v &:= 0 \\ \llbracket \varphi \to \psi \rrbracket_v &:= \begin{cases} 1 & \text{if } \llbracket \varphi \rrbracket_v = 0 \text{ or } \llbracket \psi \rrbracket_v = 1 \\ 0 & \text{otherwise} \end{cases}$$

Why proving?

► Goal: Given φ , does $\vDash \varphi$ hold?

▶ First approach: Evaluate and check $\llbracket \varphi \rrbracket_v = 1$ for all v

Why proving?

- Goal: Given φ , does $\vDash \varphi$ hold?
- ▶ First approach: Evaluate and check $\llbracket \varphi \rrbracket_v = 1$ for all v
- Problem:
 - for Propositional Logic: Possible, but there are 2ⁿ interpretations (where n is the number of vars in φ)
 - for First-Order Logic: Impossible, there may be infinitely many interpretations

Why proving?

- Goal: Given φ , does $\vDash \varphi$ hold?
- ▶ First approach: Evaluate and check $\llbracket \varphi \rrbracket_v = 1$ for all v
- Problem:
 - for Propositional Logic: Possible, but there are 2ⁿ interpretations (where n is the number of vars in φ)
 - for First-Order Logic: Impossible, there may be infinitely many interpretations

Help:

- Use a proof system
- Idea: Construct a finite proof that φ holds
- Proof system must be *sound*: If φ can be proven $(\vdash \varphi)$, then φ is valid $(\models \varphi)$
- Proof system may be complete: If φ is valid (⊨ φ), then φ can be proven (⊢ φ)

Proof System for Propositional Logic

- ▶ Natural deduction via entailment relation $\Gamma \vdash \varphi$
 - Γ is a finite set of formulas $\psi_1, \psi_2, ..., \psi_n$
 - "from Γ , one can **deduce** φ "

Proof System for Propositional Logic

▶ Natural deduction via entailment relation $\Gamma \vdash \varphi$

- Γ is a finite set of formulas $\psi_1, \psi_2, ..., \psi_n$
- "from Γ , one can **deduce** φ "
- Defined by inference rules:

$$\begin{split} \varphi \in \Gamma \xrightarrow{\Gamma \vdash \varphi} \text{Assump} & \frac{\Gamma, (\varphi \to \bot) \vdash \bot}{\Gamma \vdash \varphi} \text{ DoubleNeg} \\ \\ \frac{\Gamma, \psi \vdash \varphi}{\Gamma \vdash \psi \to \varphi} \text{ ImpIntro} & \frac{\Gamma \vdash \psi \to \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi} \text{ ImpElime} \end{split}$$

Proof System for Propositional Logic

▶ Natural deduction via entailment relation $\Gamma \vdash \varphi$

- Γ is a finite set of formulas $\psi_1, \psi_2, ..., \psi_n$
- "from Γ , one can **deduce** φ "
- Defined by inference rules:

$$\varphi \in \Gamma \xrightarrow{\Gamma, \psi \vdash \varphi} \text{Assump} \qquad \qquad \frac{\Gamma, (\varphi \to \bot) \vdash \bot}{\Gamma \vdash \varphi} \text{DoubleNeg}$$
$$\frac{\Gamma, \psi \vdash \varphi}{\Gamma \vdash \psi \to \varphi} \text{ImpIntro} \qquad \qquad \frac{\Gamma \vdash \psi \to \varphi}{\Gamma \vdash \varphi} \text{ImpElim}$$

P ()))

This system is *sound*: If φ can be proven (⊢ φ), then φ is valid (⊨ φ)
This system is *complete*: If φ is valid (⊨ φ), then φ can be proven (⊢ φ)

Proof Trees

▶ In order to check validity of $\varphi := p \rightarrow (q \rightarrow p)...$

Proof Trees

 \blacktriangleright In order to check validity of $\varphi:=p \to (q \to p)...$

• ...prove $\vdash \varphi$, as witnessed by the following proof tree

$$\begin{array}{c} p \in \{p,q\} & \overline{p,q \vdash p} \\ \hline p \vdash q \rightarrow p \\ \hline & P \vdash p \rightarrow (q \rightarrow p) \end{array} \begin{array}{c} \text{ImpIntro} \\ \text{ImpIntro} \end{array}$$

Proof Trees

 \blacktriangleright In order to check validity of $\varphi:=p \to (q \to p)...$

• ...prove $\vdash \varphi$, as witnessed by the following proof tree

$$\frac{p \in \{p,q\}}{p,q \vdash p} \xrightarrow{\text{ASSUMP}} \frac{p \vdash q \rightarrow p}{p \vdash q \rightarrow p} \xrightarrow{\text{IMPINTRO}} \frac{p \vdash q \rightarrow p}{p \mapsto (q \rightarrow p)} \xrightarrow{\text{IMPINTRO}}$$

▶ By soundness of \vdash , φ is valid

In a typed programming language, we want to check that term t is of type T

In a typed programming language, we want to check that term t is of type T

Terms

- **1**. 3 + 2
- 2. if true then true else false
- **3**. λ*n*.*n*
- 4. $\lambda n. (\lambda b. \text{ if } b \text{ then } n \text{ else } n+n)$
- 5. λn . let sq = n * n in sq * sq

In a typed programming language, we want to check that term t is of type T

Terms

1. 3 + 2

2. if true then true else false

3. λn.n

- 4. $\lambda n. (\lambda b. \text{ if } b \text{ then } n \text{ else } n+n)$
- 5. λn . let sq = n * n in sq * sq

Types

- **1**. Int
- 2. Bool
- $\textbf{3.} \ \textit{Int} \rightarrow \textit{Int}$
- 4. $Int \rightarrow (Bool \rightarrow Int)$
- 5. $Int \rightarrow Int$

In a typed programming language, we want to check that term t is of type T

Terms

- **1**. 3 + 2
- 2. if true then true else false

3. $\lambda n.n$

- 4. $\lambda n. (\lambda b. \text{ if } b \text{ then } n \text{ else } n+n)$
- 5. λn . let sq = n * n in sq * sq

Types

- **1**. Int
- 2. Bool
- $\textbf{3.} \ \textit{Int} \rightarrow \textit{Int}$
- **4**. $Int \rightarrow (Bool \rightarrow Int)$
- **5**. Int \rightarrow Int

• We write $\vdash t : T$ if term t has type T

In a typed programming language, we want to check that term t is of type T

Terms

- **1**. 3 + 2
- 2. if true then true else false
- 3. $\lambda n.n$
- 4. $\lambda n. (\lambda b. \text{ if } b \text{ then } n \text{ else } n+n)$
- 5. λn . let sq = n * n in sq * sq

Types

- **1**. Int
- 2. Bool
- $\textbf{3.} \ \textit{Int} \rightarrow \textit{Int}$
- **4**. $Int \rightarrow (Bool \rightarrow Int)$
- 5. $Int \rightarrow Int$
- We write $\vdash t : T$ if term t has type T
- We can also talk of "soundness" here: A type system is sound if ⊢ t : T implies that t won't "crash" on execution. E.g., true + 4 crashes

• To check whether $t := \lambda x.(\lambda y.x)$ is of type $T := Int \rightarrow (Bool \rightarrow Int)$, we check whether there is a proof tree for $\vdash t : T$

- To check whether $t := \lambda x.(\lambda y.x)$ is of type $T := Int \rightarrow (Bool \rightarrow Int)$, we check whether there is a proof tree for $\vdash t : T$
- For our example, there is:

- To check whether t := λx.(λy.x) is of type T := Int → (Bool → Int), we check whether there is a proof tree for ⊢ t : T
- For our example, there is:

$$\frac{(x: Int) \in \{x: Int, y: Bool\}}{x: Int, y: Bool \vdash x: Int} \xrightarrow{\text{Env}} \text{Abs}} \frac{x: Int \vdash \lambda y. x: Bool \rightarrow Int}{ \vdash \lambda x. (\lambda y. x): Int \rightarrow (Bool \rightarrow Int)} \text{Abs}}$$

In a type system, the inference rules are designed s.t. for every pair + t : T, there exists at most one proof tree

- To check whether t := λx.(λy.x) is of type T := Int → (Bool → Int), we check whether there is a proof tree for ⊢ t : T
- For our example, there is:

$$\frac{(x: Int) \in \{x: Int, y: Bool\}}{x: Int, y: Bool \vdash x: Int} \xrightarrow{\text{ENV}} \text{Abs}}$$
$$\frac{x: Int \vdash \lambda y. x: Bool \rightarrow Int}{\vdash \lambda x. (\lambda y. x): Int \rightarrow (Bool \rightarrow Int)} \xrightarrow{\text{Abs}}$$

- t itself witnesses its own proof tree of $\vdash t: T$

- To check whether t := λx.(λy.x) is of type T := Int → (Bool → Int), we check whether there is a proof tree for ⊢ t : T
- For our example, there is:

$$\frac{(x:Int) \in \{x:Int, y:Bool\}}{x:Int, y:Bool \vdash x:Int} \xrightarrow{\text{ENV}} \text{ABS}}$$
$$\frac{x:Int \vdash \lambda y.x:Bool \rightarrow Int}{\vdash \lambda x.(\lambda y.x):Int \rightarrow (Bool \rightarrow Int)} \xrightarrow{\text{ABS}}$$

- In a type system, the inference rules are designed s.t. for every pair + t: T, there exists at most one proof tree
- t itself witnesses its own proof tree of $\vdash t: T$
- Intuition: A term itself represents a syntax tree. Put this tree upside down. Traverse the tree, thereby annotating types according to the inference rules. If this works out, you have **the** proof tree. Otherwise, there is none.

Preview: Type System as a Proof System ► You noticed the similarity between the two proof trees?

$$\begin{array}{c} p \in \{p,q\} & \hline p,q \vdash p \\ \hline p,q \vdash p & \\ \hline p \vdash q \rightarrow p & \\ \hline & \\ \hline & \\ \vdash p \rightarrow (q \rightarrow p) & \\ \end{array} \text{ImpIntro}$$

$$\frac{(x: Int) \in \{x: Int, y: Bool\}}{x: Int, y: Bool \vdash x: Int} \xrightarrow{\text{Env}} \text{Abs}}$$
$$\frac{x: Int \vdash \lambda y. x: Bool \rightarrow Int}{\vdash \lambda x. (\lambda y. x): Int \rightarrow (Bool \rightarrow Int)} \xrightarrow{\text{Abs}}$$

Is it be possible to encode a proof tree for a logic as a proof tree for a type system?

Preview: Type System as a Proof System ▶ You noticed the similarity between the two proof trees?

$$\begin{array}{c} p \in \{p,q\} & \hline p,q \vdash p \\ \hline p,q \vdash p & \\ \hline p \vdash q \rightarrow p & \\ \hline & \vdash p \rightarrow (q \rightarrow p) \end{array} \text{IMPINTRO}$$

$$(x: Int) \in \{x: Int, y: Bool\} \xrightarrow[x: Int, y: Bool \vdash x: Int]{} ENV$$

$$x: Int \vdash \lambda y.x: Bool \rightarrow Int$$

$$L \lambda x.(\lambda y.x): Int \rightarrow (Bool \rightarrow Int)$$
ABS

- Is it be possible to encode a proof tree for a logic as a proof tree for a type system?
- It is possible. It has been discovered in 1980 by Howard (Curry-Howard-Correspondence)

Preview: Type System as a Proof SystemYou noticed the similarity between the two proof trees?

$$\begin{array}{c} p \in \{p,q\} & \hline p,q \vdash p \\ \hline p,q \vdash p & \text{IMPINTRO} \\ \hline p \vdash q \rightarrow p & & \text{IMPINTRO} \\ \hline \vdash p \rightarrow (q \rightarrow p) & & \text{IMPINTRO} \end{array}$$

$$(x: Int) \in \{x: Int, y: Bool\} \xrightarrow[x: Int, y: Bool \vdash x: Int]{} ENV$$

$$x: Int \vdash \lambda y.x: Bool \rightarrow Int$$

$$L \lambda x.(\lambda y.x): Int \rightarrow (Bool \rightarrow Int)$$
ABS

- Is it be possible to encode a proof tree for a logic as a proof tree for a type system?
- It is possible. It has been discovered in 1980 by Howard (Curry-Howard-Correspondence)
- What do we need?
 - 1. Goal: Find a way of proving a specification φ
 - 2. We encode φ as a type T
 - 3. We find a term t that is well-typed, i.e. $\vdash t:T$
 - 4. But this means that t witnesses a proof tree for T
 - 5. Thus we interpret t as a proof of T and therefore of φ !

Interactive Theorem Provers

- Proofs are manually written, potentially with some automatic proof-search aid
- Proofs are completely formal
- Proofs can be automatically checked
- You have to trust in the soundness of the proof checker
 - Trust is usually established by providing a minimal base of the proof checker

Interactive Theorem Provers

- Proofs are manually written, potentially with some automatic proof-search aid
- Proofs are completely formal
- Proofs can be automatically checked
- You have to trust in the soundness of the proof checker
 - Trust is usually established by providing a minimal base of the proof checker
- Examples: Coq, Isabelle, Agda
- May be based on type theory, but not necessarily
- Applications
 - 1. Formalized Mathematics, e.g. Four-color theorem in 1976
 - 2. Correctness Properties
 - Certified C compiler CompCert, started in 2005
 - Soundness of type systems
 - Correctness of protocols
 - Further theorems about formalisms
 - 3. Generally: Verification where the system model or the property is "too complex" for automatic methods

Coq Programming

Coq

- Coq is an interactive theorem prover
- Main idea: Propositions as Types, Proofs as Terms (Curry-Howard-Correspondence)
- One can define
 - Types (Propositions)
 - Well-typed Terms (Proofs)
- The underlying language Gallina
 - is a dependently-typed functional programming language
 - implements the Calculus of Inductive Constructions
 - is not Turing-complete (every function is total)

Getting started with Coq

- 1. Installation
 - Win/Mac: Download from https://coq.inria.fr/
 - Linux: We recommend installation via OPAM https://cog.inria.fr/opam/www/using.html
- 2. IDE
 - Recommendation: Coq IDE, shipped with Coq (see screenshot)
 - Popular plugin for Emacs: Proof General

O															
1	ie j	idit ⊻je	ew <u>N</u> avi	gation]r	y Tactics	Templates	Queries	Tools	Compile	₩indows	Help				
l	<u>a</u> :	K 🕹	* *	$\overline{\diamond} \cong$	20 😣	s · ·> 💡									
	* si	ratch*	🛓 first_	proof.v											
	Proo ap - Qed.	f. ply cor apply I apply I	nj. I.	False \/											
											Messages × Errors × jobs ×				
											f_or_t is defined				
K															
8	eady											//Line:	9 Char: 15	Cog is ready	0/0

Coq Programming (Inductive Data Types)

An inductive data type definition introduces a new type and new well-typed terms

```
Inductive bool : Type :=
| true : bool
| false : bool.
Inductive nat : Type :=
| 0 : nat
| S : nat → nat.
```

Coq Programming (Inductive Data Types)

An inductive data type definition introduces a new type and new well-typed terms

```
Inductive bool : Type :=
| true : bool
| false : bool.
Inductive nat : Type :=
| 0 : nat
| S : nat → nat.
```

bool, nat are types

true, false, O, S are value constructors

Coq Programming (Definitions)

A Definition gives a name to a term

Definition two: nat \coloneqq S(S O). **Definition** three: nat \coloneqq S(S(S O)).

Coq Programming (Definitions)

A Definition gives a name to a term

Definition two: nat \coloneqq S(S O). **Definition** three: nat \coloneqq S(S(S O)).

- Definitions can be unfolded, which is a kind of reduction
- Two terms are *convertible* (\equiv) if they reduce to the same term

E.g., S two and three are convertible

 $S two \equiv S(S(S O)) \equiv three$

Coq Programming (Definitions)

Definition two: nat \coloneqq S(S O). **Definition** three: nat \coloneqq S(S(S O)).

- Definitions can be unfolded, which is a kind of reduction
- Two terms are *convertible* (\equiv) if they reduce to the same term

 $S two \equiv S(S(S O)) \equiv three$

Intuition: Convertibility is "syntactic equality up-to certain manipulations"

Coq Programming (Functions, Pattern Matching)

We can define functions that use pattern matching

Coq Programming (Functions, Pattern Matching)

We can define functions that use pattern matching

fun x ⇒ ... introduces a function (anonymous, "λ")
 match ... with | ... end pattern-matches

Coq Programming (Functions, Pattern Matching)

We can define functions that use pattern matching

▶ fun $x \Rightarrow ...$ introduces a function (anonymous, " λ ")

match ... with | ... end pattern-matches

 Both constructs introduce a form of reduction and thus of convertibility

```
negb true

\equiv (fun x \Rightarrow ...) true

\equiv match true with | true \Rightarrow false | ...

\equiv false
```

Coq Programming (Short Notation for Functions)

Recall our function

We can use the following short notation

Coq Programming (Type-Checking)

In Coq, every term must be well-typed

What does that mean?

- We write $\Gamma \vdash t : T$ and call it a *(typing) judgement*
- "Under context Γ , term t has type T"
- Context Γ is a list of items t:T

E.g., we have $x : bool \vdash negb \ x : bool$

...but **not** $x : nat \vdash negb \ x : bool$

Coq Programming (Type-Checking)

In Coq, every term must be well-typed

What does that mean?

- We write $\Gamma \vdash t : T$ and call it a *(typing) judgement*
- "Under context Γ , term t has type T"
- Context Γ is a list of items t:T

E.g., we have $x : bool \vdash negb \ x : bool$

...but **not** $x : nat \vdash negb \ x : bool$

Coq can try to find a type T for Γ, t (a.k.a. type inference, generally undecidable)

Coq Programming (Type-Checking)

In Coq, every term must be well-typed

What does that mean?

- We write $\Gamma \vdash t : T$ and call it a *(typing) judgement*
- "Under context Γ, term t has type T"

• Context Γ is a list of items t:T

E.g., we have $x : bool \vdash negb \ x : bool$

...but **not** $x : nat \vdash negb \ x : bool$

- Coq can try to find a type T for Γ, t (a.k.a. type inference, generally undecidable)
- Coq *decides* for a given judgement whether it holds (a.k.a. type-checking)

Coq Programming (Type-Checking, Reducing in Coq)

Type-infer terms and compute (reduce) terms

Check (negb true). ~> negb true: bool Compute (negb true). ~> false: bool

 \blacktriangleright Here, the context Γ is considered by Cog but not explicitly output

Coq Programming (Recursive Functions)

We can define recursive functions

```
Fixpoint plus (m n: nat) : nat ≔
match m with
  | 0 ⇒ n
  | S m' ⇒ S (plus m' n)
end.
```

Coq Programming (Recursive Functions)

We can define recursive functions

```
Fixpoint plus (m n: nat) : nat ≔
match m with
  | 0 ⇒ n
  | S m' ⇒ S (plus m' n)
end.
```

Above was really a short notation for the following:

```
Definition plus : nat → nat → nat :=
  fix f (m n: nat) :=
    match m with
    | 0 ⇒ n
    | S m' ⇒ S (f m' n)
    end.
```

Coq Programming (Recursion must be structural)

Recursive functions in Coq always terminate because only structural recursion is allowed Coq Programming (Recursion must be structural)

- Recursive functions in Coq always terminate because only structural recursion is allowed
- Structural recursion means that recursion is only applied to sub-structures
- ► Here: m' is a sub-structure of S m'

Coq Programming (Recursion must be structural)

- Recursive functions in Coq always terminate because only structural recursion is allowed
- Structural recursion means that recursion is only applied to sub-structures
- ► Here: m' is a sub-structure of S m'
- Why this restriction? Remember: Proofs are programs, and non-terminating proofs must be avoided! (more later)

Coq Programming (Prelude and Notation)

- Standard data types, functions, notation are pre-defined via the Prelude¹
- This allows us to write a term like 3 + 2 instead of plus S(S(S O)) S(S O).
- ▶ We use the nice notation from now on wherever possible

¹https://coq.inria.fr/library/Coq.Init.Prelude.html

It is often useful to parameterize a data type to avoid multiple definitions such as natList, boolList etc.

```
Inductive list (X: Type) : Type := | nil: list X | cons: X \rightarrow list X \rightarrow list X.
```

It is often useful to parameterize a data type to avoid multiple definitions such as natList, boolList etc.

```
Inductive list (X: Type) : Type := | nil: list X | cons: X \rightarrow list X \rightarrow list X.
```

We say that list is polymorphic in its parameter X

It is often useful to parameterize a data type to avoid multiple definitions such as natList, boolList etc.

```
Inductive list (X: Type) : Type := | nil: list X | cons: X \rightarrow list X \rightarrow list X.
```

- We say that list is polymorphic in its parameter X
- We say that list is a type constructor (a function that constructs a type)

It is often useful to parameterize a data type to avoid multiple definitions such as natList, boolList etc.

```
Inductive list (X: Type) : Type := | nil: list X | cons: X \rightarrow list X \rightarrow list X.
```

- We say that list is polymorphic in its parameter X
- We say that list is a type constructor (a function that constructs a type)
- Applying this type constructor yields

```
list nat: Type
list bool: Type
...
```

In the parameterized definition

```
Inductive list (X: Type) : Type := | nil: list X 
 | cons: X \rightarrow list X \rightarrow list X.
```

 \dots the parameter X can be "multiplied-out" to \dots

Inductive list : **Type** \rightarrow **Type** \coloneqq | nil: \forall (X: **Type**), list X | cons: \forall (X: **Type**), X \rightarrow list X \rightarrow list X.

In the parameterized definition

```
Inductive list (X: Type) : Type := | nil: list X 
 | cons: X \rightarrow list X \rightarrow list X.
```

 \dots the parameter X can be "multiplied-out" to \dots

The following judgements are introduced

- ▶ list: Type → Type
- ▶ nil: ∀(X: **Type**), list X
- ▶ cons: \forall (X: **Type**), X → list X → list X

In the parameterized definition

```
Inductive list (X: Type) : Type := | nil: list X 
 | cons: X \rightarrow list X \rightarrow list X.
```

... the parameter X can be "multiplied-out" to ...

- The following judgements are introduced
 - ▶ list: Type → Type
 - ▶ nil: ∀(X: **Type**), list X
 - ▶ cons: \forall (X: **Type**), X → list X → list X
- The definitions are isomorphic (modulo technicalities), but the parameterized definition emphasises that the structure of list terms is independ. of the choice of the "type of content" x

```
Inductive list (X: Type) : Type := | nil: list X 
 | cons: X \rightarrow list X \rightarrow list X.
```

► Recall that this introduces the judgements nil: ∀(X: Type), list X cons: ∀(X: Type), X → list X → list X

```
Inductive list (X: Type) : Type := | nil: list X | cons: X \rightarrow list X \rightarrow list X.
```

▶ Recall that this introduces the judgements nil: ∀(X: Type), list X cons: ∀(X: Type), X → list X → list X
 ▶ ... so the value constructors must be instantiated, e.g.

cons nat 42 (nil nat): list nat

```
Inductive list (X: Type) : Type := | nil: list X | cons: X \rightarrow list X \rightarrow list X.
```

- ► Recall that this introduces the judgements nil: ∀(X: Type), list X cons: ∀(X: Type), X → list X → list X
- ... so the value constructors must be instantiated, e.g. cons nat 42 (nil nat): list nat
- 42 is a nat, so X must be instantiated by nat. Can we let Coq infer this and simply write cons 42 nil: list nat instead?

```
Inductive list (X: Type) : Type := | nil: list X | cons: X \rightarrow list X \rightarrow list X.
```

- ► Recall that this introduces the judgements nil: ∀(X: Type), list X cons: ∀(X: Type), X → list X → list X
- ... so the value constructors must be instantiated, e.g. cons nat 42 (nil nat): list nat
- 42 is a nat, so X must be instantiated by nat. Can we let Coq infer this and simply write cons 42 nil: list nat instead?
- Yes! (See next slide)

```
Recall our example term:
```

cons nat 42 (nil nat) : list nat

²use Require Import Coq.Lists.List.

```
Recall our example term:
```

cons nat 42 (nil nat) : list nat

We can manually mark arguments as implicit or enable this by default via

```
Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.
```

²use Require Import Coq.Lists.List.

```
Recall our example term:
```

cons nat 42 (nil nat) : list nat

 We can manually mark arguments as implicit or enable this by default via

```
Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.
```

X is strictly implicit for cons (alway inferrable)

²use Require Import Coq.Lists.List.

```
Recall our example term:
```

cons nat 42 (nil nat) : list nat

 We can manually mark arguments as implicit or enable this by default via

```
Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type ≔
| nil: list X
| cons: X → list X → list X.
```

X is strictly implicit for cons (alway inferrable)

X is contextually implicit for nil (sometimes inferrable)

²use Require Import Coq.Lists.List.

```
Recall our example term:
```

cons nat 42 (nil nat) : list nat

 We can manually mark arguments as implicit or enable this by default via

```
Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type ≔
| nil: list X
| cons: X → list X → list X.
```

- X is strictly implicit for cons (alway inferrable)
- X is contextually implicit for nil (sometimes inferrable)
- ► This allows to write the example term as:

cons 42 nil : list nat

²use Require Import Coq.Lists.List.

```
Recall our example term:
```

cons nat 42 (nil nat) : list nat

 We can manually mark arguments as implicit or enable this by default via

```
Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type ≔
| nil: list X
| cons: X → list X → list X.
```

- X is strictly implicit for cons (alway inferrable)
- X is contextually implicit for nil (sometimes inferrable)
- This allows to write the example term as: cons 42 nil : list nat
- But we lack the context to infer nil : list nat

²use Require Import Coq.Lists.List.

```
Recall our example term:
```

cons nat 42 (nil nat) : list nat

We can manually mark arguments as implicit or enable this by default via

```
Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.
```

- ▶ X is *strictly* implicit for cons (alway inferrable)
- X is contextually implicit for nil (sometimes inferrable)
- This allows to write the example term as: cons 42 nil : list nat

But we lack the context to infer nil : list nat

There is further notation²: 42::nil : list nat ²use Require Import Coq.Lists.List.

- Why do we have to bother about explicit parameters in expressions?
- In standard programming languages, parameters in terms can be simply deduced by the type checker and are therefore implicit, i.e. they are omitted in terms
- Here however, parameters are more subtle and cannot always be deduced
- Take-away: If we are using the usual programming constructs, we just use the options

Set Implicit Arguments.
Set Contextual Implicit.

and don't have to care about the majority of parameters!

Propositions as Types

We have seen a fairly standard functional programming language (with restricted recursion)

- We have seen a fairly standard functional programming language (with restricted recursion)
- But wasn't Coq about giving proofs of propositions about programs?

- We have seen a fairly standard functional programming language (with restricted recursion)
- But wasn't Coq about giving proofs of propositions about programs?
- Roadmap: We add very few features to the language and show how we can prove propositions within the language, as opposed to using some meta framework

- We have seen a fairly standard functional programming language (with restricted recursion)
- But wasn't Coq about giving proofs of propositions about programs?
- Roadmap: We add very few features to the language and show how we can prove propositions within the language, as opposed to using some meta framework
- ▶ We need to establish the following mechanisms:
 - A **proposition** (logical statement) is encoded as a **type**
 - A proof of a proposition is encoded as a term of that type

- We have seen a fairly standard functional programming language (with restricted recursion)
- But wasn't Coq about giving proofs of propositions about programs?
- Roadmap: We add very few features to the language and show how we can prove propositions within the language, as opposed to using some meta framework
- ▶ We need to establish the following mechanisms:
 - A proposition (logical statement) is encoded as a type
 - A proof of a proposition is encoded as a term of that type
- The idea of using propositions as types is also called Curry-Howard-Correspondence

The Idea. 2

Spoilers:

Implication $P \rightarrow Q$ Conjunction $P \wedge Q$ Disjunction $P \lor Q$ Top ⊤ Bottom |

- $\tilde{=}$ Funct. type P $\rightarrow Q$
- $\tilde{=}$ Product type P \times Q
- $\tilde{=}$ Sum type P + Q
- $\tilde{=}$ Unit type 1
- $\tilde{=}$ Empty type 0
- Univ. Qu. $\forall (x:A), P(x) \cong \Pi$ -types Exis. Qu. $\exists (x:A), P(x) \quad \tilde{=} \Sigma$ -types
- Modus Ponens: From $P \to Q$ and P one de- f: $P \to Q$ and p: P duces Q
- $\tilde{=}$ Function application: gives f p: Q
- There is a proof tree for $P \stackrel{\sim}{=}$ There is a term t such that t: P

Top and Bottom

- Let's define the proposition \top ("truth")
- \blacktriangleright There should be a proof for \top

Inductive True : Prop :=

I : True.

Top and Bottom

- Let's define the proposition \top ("truth")
- There should be a proof for \top

Inductive True : Prop :=

I : True.

• Let's define the proposition \perp ("falsity")

• There should be **no** proof for \bot

Inductive False : **Prop** := .

Top and Bottom

- Let's define the proposition \top ("truth")
- There should be a proof for \top

Inductive True : Prop ≔
I : True.

• Let's define the proposition \perp ("falsity")

• There should be **no** proof for \perp

Inductive False : **Prop** := .

 In Coq, there is a special type universe for propositions, called Prop (more about universes later)

▶ From now on, we write \top for True and \bot for False

We now come to our first connective, conjunction

```
Inductive and (A B: Prop) : Prop := conj : A \rightarrow B \rightarrow and A B.
```

▶ We now come to our first connective, conjunction

```
Inductive and (A B: Prop) : Prop := conj : A \rightarrow B \rightarrow and A B.
```

and is a type constructor (better: **Prop** constructor):

- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for conj)
- There is notation A \land B for and A B

▶ We now come to our first connective, conjunction

```
Inductive and (A B: Prop) : Prop := conj : A \rightarrow B \rightarrow and A B.
```

and is a type constructor (better: **Prop** constructor):

- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for conj)
- There is notation $A \land B$ for and A B

• How do you prove $A \wedge B$?

We now come to our first connective, conjunction

```
Inductive and (A B: Prop) : Prop := conj : A \rightarrow B \rightarrow and A B.
```

and is a type constructor (better: **Prop** constructor):

- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for conj)
- There is notation $A \land B$ for and A B
- How do you prove $A \wedge B$?
- Give proofs a: A and b: B and apply conj to them

We now come to our first connective, conjunction

```
Inductive and (A B: Prop) : Prop := conj : A \rightarrow B \rightarrow and A B.
```

and is a type constructor (better: **Prop** constructor):

- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for conj)
- There is notation $A \land B$ for and A B
- How do you prove $A \wedge B$?
- Give proofs a: A and b: B and apply conj to them

```
Example: Prove \top \land \top
```

```
Definition t_and_t: T ∧ T ≔ conj I I.
```

▶ We now come to our second connective, disjunction

```
Inductive or (A B: Prop) : Prop :=
| \text{ or_introl } : A \rightarrow \text{ or } A B
| \text{ or_intror } : B \rightarrow \text{ or } A B.
```

▶ We now come to our second connective, disjunction

```
Inductive or (A B: Prop) : Prop :=
| \text{ or_introl } : A \rightarrow \text{ or } A B
| \text{ or_intror } : B \rightarrow \text{ or } A B.
```

• or is a type constructor (better: **Prop** constructor):

- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for or_introl, or_intror)
- ► There is notation A ∨ B for or A B

▶ We now come to our second connective, disjunction

```
Inductive or (A B: Prop) : Prop :=
| \text{ or_introl } : A \rightarrow \text{ or } A B
| \text{ or_intror } : B \rightarrow \text{ or } A B.
```

• or is a type constructor (better: **Prop** constructor):

- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for or_introl, or_intror)
- ► There is notation A ∨ B for or A B

• How do you prove $A \vee B$?

▶ We now come to our second connective, disjunction

```
Inductive or (A B: Prop) : Prop :=
| \text{ or_introl } : A \rightarrow \text{ or } A B
| \text{ or_intror } : B \rightarrow \text{ or } A B.
```

• or is a type constructor (better: **Prop** constructor):

- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for or_introl, or_intror)
- ► There is notation A ∨ B for or A B
- ▶ How do you prove $A \lor B$?
- Prove a: A and apply or_introl or prove b: B and apply or_intror

▶ We now come to our second connective, disjunction

```
Inductive or (A B: Prop) : Prop :=
| \text{ or_introl } : A \rightarrow \text{ or } A B
| \text{ or_intror } : B \rightarrow \text{ or } A B.
```

• or is a type constructor (better: **Prop** constructor):

- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for or_introl, or_intror)
- ► There is notation A ∨ B for or A B
- ▶ How do you prove $A \lor B$?
- Prove a: A and apply or_introl or prove b: B and apply or_intror
- Example: Prove $\bot \lor \top$

```
Definition f_or_t: ⊥ ∨ ⊤ ≔
or_intror I.
```

Types, so far

- Let's recall what we know about types in Coq so far
- First, how are types formed? We saw 3 possibilities:
- 1a) Inductive types (atomic)
 bool : Type
 with value true, false
 L : Prop
 no proofs
 1b) Inductive types (applied type constructors)
 list nat : Type
 with value 1::2::3::nil, ...
 - ► T∧T : Prop
 ► with proof conj I I

Types, so far

2) Function Types

Types, so far

3) Polymorphic Types ► ∀ (X: **Type**), list X : Type with one value: nil ▶ \forall (X: **Type**), X \rightarrow list X : Type • with value fun (X: Type) (x: X) \Rightarrow x::x::x::nil ► ... ▶ \forall (A B: **Prop**), A \rightarrow B \rightarrow A \land B : Prop with proof conj \blacktriangleright \forall (P: **Prop**), $\top \lor P$: Prop with... a proof? Yes: fun (_: Prop) ⇒ or_introl I

- Polymorphic types are function types that take types as arguments
- Polymorphic values are functions that take types as arguments

- As we have seen, propositions can be polymorphic, too
- ▶ Example: For all propositions P, we have $\top \lor P$

- As we have seen, propositions can be polymorphic, too
- ▶ Example: For all propositions P, we have $\top \lor P$
- We formulate and prove this proposition as follows:

```
Definition t_or_p:
 ∀ (P: Prop), T ∨ P ≔
fun (_: Prop) ⇒ or_introl I.
```

- As we have seen, propositions can be polymorphic, too
- ▶ Example: For all propositions P, we have $\top \lor P$
- We formulate and prove this proposition as follows:

```
Definition t_or_p:
 ∀ (P: Prop), T ∨ P ≔
fun (_: Prop) ⇒ or_introl I.
```



```
Definition t_or_p:
 ∀ P, T ∨ P :=
 fun _ ⇒ or_introl I.
```

- As we have seen, propositions can be polymorphic, too
- ▶ Example: For all propositions P, we have $\top \lor P$
- We formulate and prove this proposition as follows:

```
Definition t_or_p:
 ∀ (P: Prop), T ∨ P ≔
fun (_: Prop) ⇒ or_introl I.
```



```
Definition t_or_p:
 ∀ P, T ∨ P :=
fun _ ⇒ or_introl I.
```

► The type is *polymorphic* in P

- As we have seen, propositions can be polymorphic, too
- ▶ Example: For all propositions P, we have $\top \lor P$
- We formulate and prove this proposition as follows:

```
Definition t_or_p:
 ∀ (P: Prop), T ∨ P ≔
fun (_: Prop) ⇒ or_introl I.
```



```
Definition t_or_p:
 ∀ P, T ∨ P :=
fun _ ⇒ or_introl I.
```

► The type is *polymorphic* in P

► The proof is *polymorphic* in P

▶ We now come to our third logical connective, implication

- We now come to our third logical connective, implication
- You have seen it, as it is already built-in: An *implication* is a *function type*!

- We now come to our third logical connective, implication
- You have seen it, as it is already built-in: An *implication* is a *function type*!
- ▶ Example: Prove that for all propositions P, we have P \rightarrow T \land P.

```
Definition true_p:

\forall (P: Prop), P \rightarrow (T \land P) :=

fun (P: Prop) (p: P) \Rightarrow conj I p.
```

- We now come to our third logical connective, implication
- You have seen it, as it is already built-in: An *implication* is a *function type*!
- ▶ Example: Prove that for all propositions P, we have P \rightarrow T \land P.

```
Definition true_p:

\forall (P: Prop), P \rightarrow (T \land P) :=

fun (P: Prop) (p: P) \Rightarrow conj I p.
```



```
Definition true_p:

\forall (P: Prop), P \rightarrow (T \land P) :=

fun P p \Rightarrow conj I p.
```

A conjunction can be proven as follows

```
Definition t_and_t: T ∧ T ≔
  conj I I.
```

A conjunction can be proven as follows

```
Definition t_and_t: T ∧ T ≔
    conj I I.
```

We call the value of a proposition a proof term

A conjunction can be proven as follows

```
Definition t_and_t: T ∧ T ≔
    conj I I.
```

We call the value of a proposition a proof term

This proof term can equivalently be obtained via tactics

```
Lemma t_and_t: T A T.
Proof.
apply conj.
- apply I.
- apply I.
Qed.
```

A conjunction can be proven as follows

```
Definition t and t: \top \land \top :=
  conj I I.
```

We call the value of a proposition a proof term

This proof term can equivalently be obtained via tactics

```
Lemma t_and_t: \top \land \top.
Proof.
  apply conj.
  - apply I.
  - apply I.
Qed.
```


Tactics generate proof terms

A conjunction can be proven as follows

```
Definition t_and_t: T ∧ T ≔
    conj I I.
```

We call the value of a proposition a proof term

This proof term can equivalently be obtained via tactics

```
Lemma t_and_t: T A T.
Proof.
   apply conj.
   - apply I.
   - apply I.
Qed.
```


Display proof term via Print t_and_t.

Lemma t_and_t: $T \land T$.
Proof.
apply conj.
- apply I .
- apply I .
Qed.

Enables backwards-directed reasoning

Lemma t_and_t: $T \land T$.
Proof.
apply conj.
- apply I .
- apply I .
Qed.

- Enables backwards-directed reasoning
- The goal (proof obligation) is simplified/divided/reduced to smaller subgoals

Lemma t_and_t: $T \land T$.
Proof.
apply conj.
- apply I .
- apply I .
Qed.

- Enables backwards-directed reasoning
- The goal (proof obligation) is simplified/divided/reduced to smaller subgoals
- apply can be used to apply a value constructor conj

<pre>Lemma t_and_t:</pre>	$\top \land \top$.
Proof.	
apply conj.	
- apply I.	
- apply I.	
Qed.	

- Enables backwards-directed reasoning
- The goal (proof obligation) is simplified/divided/reduced to smaller subgoals
- apply can be used to apply a value constructor conj
- If the value constructor expects further arguments, further subgoals are generated

<pre>Lemma t_and_t:</pre>	Т	\wedge	Τ.	
Proof.				
apply conj.				
- apply I.				
- apply I.				
Qed.				

- Enables backwards-directed reasoning
- The goal (proof obligation) is simplified/divided/reduced to smaller subgoals
- apply can be used to apply a value constructor conj
- If the value constructor expects further arguments, further subgoals are generated
- \blacktriangleright This is the case in our example: We have two subgoals \top and \top

Tactic: **exact**

Lemma t_and_t: T A T.
Proof.
exact (conj I I).
Qed.

By exact, one can give an explicit proof term

Tactic: **exact**

```
Lemma t_and_t: T A T.
Proof.
exact (conj I I).
Qed.
```

- By exact, one can give an explicit proof term
- In this example, we give the whole proof term just by a single exact, which is equivalent to the two other definitions of t_and_t

Tactic: intros

```
Lemma p_q_p: \forall (P Q: Prop), P \rightarrow Q \rightarrow P.

Proof.

intros P Q p q.

apply p.

Qed.
```

By intros, arguments are assumed

Tactic: intros

```
Lemma p_q_p: \forall (P Q: Prop), P \rightarrow Q \rightarrow P.

Proof.

intros P Q p q.

apply p.

Qed.
```

By intros, arguments are assumed

They are now available as hypotheses in the context Γ

Tactic: intros

```
Lemma p_q_p: \forall (P Q: Prop), P \rightarrow Q \rightarrow P.

Proof.

intros P Q p q.

apply p.

Qed.
```

By intros, arguments are assumed

They are now available as hypotheses in the context Γ

```
► Correspondence to proof terms:
intros x y. introduces fun x y ⇒ ...
```

Tactic: **destruct** (1)

```
Lemma pq_p: ∀ (P Q: Prop), P ∧ Q → P.
Proof.
intros P Q H.
destruct H as [p q].
apply p.
Qed.
```

By destruct, a hypothesis is case-analyzed

Tactic: **destruct** (1)

```
Lemma pq_p: ∀ (P Q: Prop), P ∧ Q → P.
Proof.
intros P Q H.
destruct H as [p q].
apply p.
Qed.
```

- By destruct, a hypothesis is case-analyzed
- In this example, there is only one case, conj

Tactic: **destruct** (1)

```
Lemma pq_p: ∀ (P Q: Prop), P ∧ Q → P.
Proof.
intros P Q H.
destruct H as [p q].
apply p.
Qed.
```

- By destruct, a hypothesis is case-analyzed
- In this example, there is only one case, conj
- ► Correspondence to proof terms: Introduces match ... with conj p q ⇒ ...

Tactics: destruct (2), left, right

```
Lemma pq_or_qp:
	∀ (P Q: Prop), P ∨ Q → Q ∨ P.
Proof.
	intros P Q H.
	destruct H as [p | q].
	- right. apply p.
	- left. apply q.
Qed.
```

By destruct, a hypothesis is case-analyzed

Tactics: destruct (2), left, right

```
Lemma pq_or_qp:
	∀ (P Q: Prop), P ∨ Q → Q ∨ P.
Proof.
	intros P Q H.
	destruct H as [p | q].
	- right. apply p.
	- left. apply q.
Qed.
```

- By destruct, a hypothesis is case-analyzed
- For each case, there is a subgoal

Tactics: destruct (2), left, right

```
Lemma pq_or_qp:
 ∀ (P Q: Prop), P ∨ Q → Q ∨ P.
Proof.
 intros P Q H.
 destruct H as [p | q].
 - right. apply p.
 - left. apply q.
Oed.
```

- By destruct, a hypothesis is case-analyzed
- For each case, there is a subgoal
- ► Correspondence to proof terms: Introduces match ... with | ... | ... ⇒ ...
- By left (right), the first (second) constructor is selected
- Correspondence to proof terms: Introduces or_introl resp. or_intror

Tactic: **split**

```
Lemma and_comm:

∀ (P Q: Prop), P ∧ Q → Q ∧ P.

Proof.

intros P Q H.

destruct H as [p q].

split.

- apply q.

- apply p.

Qed.
```

By split, a goal is split into subgoals

Tactic: **split**

```
Lemma and_comm:
∀ (P Q: Prop), P ∧ Q → Q ∧ P.
Proof.
intros P Q H.
destruct H as [p q].
split.
- apply q.
- apply p.
Qed.
```

By split, a goal is split into subgoals

```
For each case, there is a subgoal
```

Tactic: **split**

```
Lemma and_comm:

∀ (P Q: Prop), P ∧ Q → Q ∧ P.

Proof.

intros P Q H.

destruct H as [p q].

split.

- apply q.

- apply p.

Qed.
```

- By split, a goal is split into subgoals
- For each case, there is a subgoal
- Correspondence to proof terms: Introduces conj

```
Lemma false_proves_anything:
 ∀ (P: Prop), ⊥ → P.
Proof.
 intros P f.
 exfalso.
 exact f.
Qed.
```

• exfalso replaces the current goal by \perp

```
Lemma false_proves_anything:
 ∀ (P: Prop), ⊥ → P.
Proof.
 intros P f.
 exfalso.
 exact f.
Qed.
```

• **exfalso** replaces the current goal by \perp

▶ In other words, proving \perp suffices to prove any P

```
Lemma false_proves_anything:
∀ (P: Prop), ⊥ → P.
Proof.
intros P f.
exfalso.
exact f.
Qed.
```

• exfalso replaces the current goal by \perp

- ▶ In other words, proving \perp suffices to prove any P
- The correspondence to proof terms is very interesting. Recall that ⊥ is an empty type. What happens if we assume a proof of ⊥ (as in the example)? As with every value, we can case-analyze it and prove P for every case. But there are no cases, so we are done!

```
Lemma false_proves_anything:
∀ (P: Prop), ⊥ → P.
Proof.
intros P f.
exfalso.
exact f.
Qed.
```

• exfalso replaces the current goal by \perp

- ▶ In other words, proving \perp suffices to prove any P
- The correspondence to proof terms is very interesting. Recall that ⊥ is an empty type. What happens if we assume a proof of ⊥ (as in the example)? As with every value, we can case-analyze it and prove P for every case. But there are no cases, so we are done!
- Crucial part of the corresponding proof term: match f with (nothing here) end

```
Lemma negb_tf: negb true = false.
Proof.
simpl.
reflexivity.
Qed.
```

By simpl, a goal is maximally reduced

```
Lemma negb_tf: negb true = false.
Proof.
simpl.
reflexivity.
Qed.
```

By simpl, a goal is maximally reduced

This yields the subgoal false = false

```
Lemma negb_tf: negb true = false.
Proof.
simpl.
reflexivity.
Qed.
```

- By simpl, a goal is maximally reduced
- This yields the subgoal false = false
- By reflexivity, we can prove such a goal

```
Lemma negb_tf: negb true = false.
Proof.
simpl.
reflexivity.
Qed.
```

- By simpl, a goal is maximally reduced
- This yields the subgoal false = false
- By reflexivity, we can prove such a goal
- How is = encoded as a type and what proof term does reflexivity introduce?

```
Lemma negb_tf: negb true = false.
Proof.
simpl.
reflexivity.
Qed.
```

- By simpl, a goal is maximally reduced
- This yields the subgoal false = false
- By reflexivity, we can prove such a goal
- How is = encoded as a type and what proof term does reflexivity introduce?
- The answer is "as an inductive type" but the details are not relevant at this point

▶ We now come to our fourth logical connective, negation

- ▶ We now come to our fourth logical connective, negation
- ▶ You have seen it, as it is already built-in: The negation of a proposition P is the implication P $\rightarrow \bot$

- We now come to our fourth logical connective, negation
- ▶ You have seen it, as it is already built-in: The negation of a proposition P is the implication P $\rightarrow \bot$
- \blacktriangleright We use the notation $\sim_{\mathbb{P}}$ for $_{\mathbb{P}}$ \rightarrow \perp

- We now come to our fourth logical connective, negation
- ▶ You have seen it, as it is already built-in: The negation of a proposition P is the implication P $\rightarrow \bot$
- \blacktriangleright We use the notation $\sim_{\mathbb{P}}$ for $_{\mathbb{P}}$ \rightarrow \perp
- Example: Prove that for all propositions P, we have $P \rightarrow \sim (\sim P)$.

```
Lemma not_not:
  ∀ (P: Prop), P → ~(~P).
Proof.
  intros P p.
  intros H.
  apply H.
  exact p.
Qed.
```

Types that Depend on Terms

▶ Recall polymorphic types, i.e. types that depend on types
 3) Polymorphic Types
 ▶ ∀ (X: Type), list X : Type
 ▶ with value nil
 ▶ ∀ (P: Prop), T∨ P : Prop
 ▶ with proof fun (_: Prop) ⇒ or_introl I

Types that Depend on Terms

▶ Recall polymorphic types, i.e. types that depend on types
3) Polymorphic Types
▶ ∀ (X: Type), list X : Type
▶ with value nil
▶ ∀ (P: Prop), T∨ P : Prop
▶ with proof fun (_: Prop) ⇒ or_introl I
▶ Types can also depend on terms

4) Dependent Types

▶ \forall (b: bool),	negb (negb b) = b	: Prop
▶ ∀ (n: nat),	0 + n = n	: Prop
▶ ∀ (n: nat),	n + 0 = n	: Prop
\blacktriangleright \forall (m n: nat),	m + n = n + m	: Prop

Types that Depend on Terms

Recall polymorphic types, i.e. types that depend on types 3) Polymorphic Types ► ∀ (X: **Type**), list X : Type with value nil \blacktriangleright \forall (P: **Prop**), $\top \lor P$: Prop ▶ with proof fun (_: Prop) ⇒ or_introl I Types can also depend on terms 4) Dependent Types ▶ \forall (b: bool), neqb (neqb b) = b

- ∀ (b: bool), negb (negb b) = b : Prop
 ∀ (n: nat), 0 + n = n : Prop
- $\blacktriangleright \forall (n: nat), n + 0 = n : Prop$
- $\blacktriangleright \forall (m n: nat), m + n = n + m : Prop$

Roadmap: We prove all of the above properties!

Type Universes

The type of a type is called a type universe: Either Type or Prop³

bool	:	Туре	Т	:	Prop
nat	:	Туре	10 = 4	:	Prop
			\forall (P: Prop), $\top \lor P$:	Prop

³This is a simplified view that is sufficient for now.

Type Universes

The type of a type is called a type universe: Either Type or Prop³

bool	:	Туре	Т	:	Prop
nat	:	Туре	10 = 4	:	Prop
			\forall (P: Prop), $\top \lor P$:	Prop

► A type of **Type** (e.g. nat) contains **data values**

0	:	nat	true	:	bool
S O	:	nat	false	:	bool
plus	:	$\operatorname{nat} \rightarrow \operatorname{nat}$ -	\rightarrow nat		

³This is a simplified view that is sufficient for now.

Type Universes

The type of a type is called a type universe: Either Type or Prop³

bool	:	Туре	Т	:	Prop
nat	:	Туре	10 = 4	:	Prop
			\forall (P: Prop), $\top \lor P$:	Prop

A type of Type (e.g. nat) contains data values

0	:	nat	true	:	bool
S O	:	nat	false	:	bool
plus	:	$nat \to nat$	\rightarrow nat		

► A type of **Prop** (e.g. ⊤) contains **proofs**

I : T (fun (_: Type) ⇒ or_introl I) : \forall (P: Prop), $\top \lor P$

³This is a simplified view that is sufficient for now.

▶ Let's prove negb (negb b) = b for all b

```
Definition negb (x: bool) : bool :=
  match x with
  | true ⇒ false
  | false ⇒ true
  end.
```

▶ Let's prove negb (negb b) = b for all b

The term negb (neg b) does not reduce

```
Definition negb (x: bool) : bool :=
  match x with
  | true ⇒ false
  | false ⇒ true
  end.
```

- Let's prove negb (negb b) = b for all b
- The term negb (neg b) does not reduce
- Why not? negb performs pattern matching, but since we don't know anything about b (it could be any bool), we don't know which case will match

```
Definition negb (x: bool) : bool :=
  match x with
  | true ⇒ false
  | false ⇒ true
  end.
```

- Let's prove negb (negb b) = b for all b
- The term negb (neg b) does not reduce
- Why not? negb performs pattern matching, but since we don't know anything about b (it could be any bool), we don't know which case will match
- But there are only two possible values for b. So let's do a case analysis and prove every case!

b is true. Then negb (negb true) reduces to true.
 b is false. Then negb (negb false) reduces to false.

We have all the tools to prove this in Coq

```
Definition negb (x: bool) : bool ≔
  match x with
  | true ⇒ false
  | false ⇒ true
  end.
```

We have all the tools to prove this in Coq

```
Lemma negb_inverse:
 ∀ (b: bool), negb (negb b) = b.
Proof.
 intros b.
 destruct b.
 - simpl. reflexivity.
 - simpl. reflexivity.
Oed.
```

Back to Natural Numbers

```
Fixpoint plus (m n: nat) : nat ≔
match m with
  | 0 ⇒ n
  | S m' ⇒ S (plus m' n)
end.
```

• We can easily prove that 0 + n = n for all n

Back to Natural Numbers

```
Fixpoint plus (m n: nat) : nat ≔
match m with
  | 0 ⇒ n
  | S m' ⇒ S (plus m' n)
end.
```

• We can easily prove that 0 + n = n for all n

Because: 0 + n reduces to n by definition of plus

Back to Natural Numbers

```
Fixpoint plus (m n: nat) : nat ≔
match m with
  | 0 ⇒ n
  | S m' ⇒ S (plus m' n)
end.
```

• We can easily prove that 0 + n = n for all n

Because: 0 + n reduces to n by definition of plus

```
Lemma 0_plus_n: ∀ (n: nat), 0+n = n.
Proof.
intros n.
simpl.
reflexivity.
Qed.
```

```
Fixpoint plus (m n: nat) : nat ≔
match m with
| 0 ⇒ n
| S m' ⇒ S (plus m' n)
end.
```

• What about the other way round, m + 0 = m?

```
Fixpoint plus (m n: nat) : nat ≔
match m with
| 0 ⇒ n
| S m' ⇒ S (plus m' n)
end.
```

- What about the other way round, m + 0 = m?
- This should hold, but we cannot reduce m + 0

```
Fixpoint plus (m n: nat) : nat ≔
match m with
| 0 ⇒ n
| S m' ⇒ S (plus m' n)
end.
```

- What about the other way round, m + 0 = m?
- This should hold, but we cannot reduce m + 0
- Why not? plus pattern-matches on the first argument, but since we don't know anything about m (it could be any number), we don't know which case will match

```
Fixpoint plus (m n: nat) : nat ≔
  match m with
  | 0 ⇒ n
  | S m' ⇒ S (plus m' n)
  end.
```

- What about the other way round, m + 0 = m?
- This should hold, but we cannot reduce m + 0
- Why not? plus pattern-matches on the first argument, but since we don't know anything about m (it could be any number), we don't know which case will match
- "any number" rings a bell: Proof by Natural Induction!

```
Fixpoint plus (m n: nat) : nat ≔
match m with
| 0 ⇒ n
| S m' ⇒ S (plus m' n)
end.
```

- What about the other way round, m + 0 = m?
- This should hold, but we cannot reduce m + 0
- Why not? plus pattern-matches on the first argument, but since we don't know anything about m (it could be any number), we don't know which case will match
- "any number" rings a bell: Proof by Natural Induction!
- **Base case.** To show: 0 + 0 = 0. By definition.

```
Fixpoint plus (m n: nat) : nat ≔
match m with
| 0 ⇒ n
| S m' ⇒ S (plus m' n)
end.
```

- What about the other way round, m + 0 = m?
- This should hold, but we cannot reduce m + 0
- Why not? plus pattern-matches on the first argument, but since we don't know anything about m (it could be any number), we don't know which case will match
- "any number" rings a bell: Proof by Natural Induction!
- **Base case.** To show: 0 + 0 = 0. By definition.
- Inductive case. Let IH be m + 0 = m. To show:
 (S m) + 0 = S m. But this is by def. of plus convertible to
 S(m + 0) = S m. Now use IH, so we have to show
 S m = S m which holds by reflexivity of =.

Let's do the same proof, but in Coq

```
► Let's do the same proof, but in Coq
Lemma n_plus_0: ∀ (n: nat), n + 0 = n.
Proof.
intros n.
induction n.
- simpl. reflexivity.
- simpl. rewrite IHn. reflexivity.
Qed.
```

induction n does a case-analysis on n (like destruct), but provides an additional inductive hypothesis

```
► Let's do the same proof, but in Coq
Lemma n_plus_0: ∀ (n: nat), n + 0 = n.
Proof.
intros n.
induction n.
- simpl. reflexivity.
- simpl. rewrite IHn. reflexivity.
Qed.
```

- induction n does a case-analysis on n (like destruct), but provides an additional inductive hypothesis
- rewrite IHn uses the equation IHn to substitute a subterm in the current goal

Remember the very first property we wanted to show? m + n = n + m for all m, n

- Remember the very first property we wanted to show?
 m + n = n + m for all m. n
- Proof by induction over m.
 - Base case. To show: 0 + n = n + 0. By our last lemma, we know n + 0 = n; by definition of plus we know 0 + n = n; thus we are done.
 - ▶ Inductive case. Let IH be m + n = n + m. To show: (S m) + n = n + (S m). This goal reduces to S(m + n) = n + (S m). By the IH, we can reduce the goal to S(n + m) = n + (S m). Here we have the same problem as with proving n + 0 = n: It does not hold by definition, because plus pattern-matches on the *first* argument. Thus we prove this as an extra lemma, after which the proof is completed.

Let's prove the little lemma m + (S n) = S (m + n) for all m, n ... by induction on m

```
Let's prove the little lemma
m + (S n) = S (m + n) for all m, n
... by induction on m
```

```
Lemma m_plus_S:
  ∀ (m n: nat), m+(S n) = S (m+n).
Proof.
  intros m n.
  induction m.
  - simpl. reflexivity.
  - simpl. rewrite IHm. reflexivity.
Qed.
```

Now we can prove commutativity of addition in Coq, following the proof sketch given before

Now we can prove commutativity of addition in Coq, following the proof sketch given before

```
Lemma plus_comm:

∀ (m n: nat), m+n = n+m.

Proof.

intros m.

induction m.

- intros. rewrite m_plus_0.

simpl. reflexivity.

- intros n. simpl. rewrite IHm.

rewrite m_plus_S. reflexivity.

Qed.
```

We know the principle of natural induction from maths

⁴For further reading: "x is-a-substructure-of y" is well-founded

- We know the principle of natural induction from maths
- Why have we considered this principle a sound proof method?

⁴For further reading: "x is-a-substructure-of y" is well-founded

- We know the principle of natural induction from maths
- Why have we considered this principle a sound proof method?
- Because our objects (here: natural numbers) are constructed out of **finitely** many steps⁴. We can view a proof of induction as a recipe on how to obtain a proof for **any concrete** number n.

⁴For further reading: "x is-a-substructure-of y" is well-founded

- We know the principle of natural induction from maths
- Why have we considered this principle a sound proof method?
- Because our objects (here: natural numbers) are constructed out of **finitely** many steps⁴. We can view a proof of induction as a recipe on how to obtain a proof for **any concrete** number n.
- Example: How do we prove 3 + 0 = 3?
 - Use Inductive Case, but need to prove 2 + 0 = 2. How?
 - ▶ Use Inductive Case, but need to prove 1+0 = 1. How?
 - Use Inductive Case, but need to prove 0 + 0 = 0. How?
 - Use Base Case.

⁴For further reading: "x is-a-substructure-of y" is well-founded

- We know the principle of natural induction from maths
- Why have we considered this principle a sound proof method?
- Because our objects (here: natural numbers) are constructed out of **finitely** many steps⁴. We can view a proof of induction as a recipe on how to obtain a proof for **any concrete** number n.
- Example: How do we prove 3 + 0 = 3?
 - Use Inductive Case, but need to prove 2 + 0 = 2. How?
 - Use Inductive Case, but need to prove 1 + 0 = 1. How?
 - Use Inductive Case, but need to prove 0 + 0 = 0. How?
 - Use Base Case.
- Doesn't this proof construction look a lot like... a recursive program?

⁴For further reading: "x is-a-substructure-of y" is well-founded

• Example: How do we prove 3 + 0 = 3?

- Use Inductive Case, but need to prove 2 + 0 = 2. How?
- Use Inductive Case, but need to prove 1 + 0 = 1. How?
- Use Inductive Case, but need to prove 0 + 0 = 0. How?
- Use Base Case.

⁵You can take a look e.g. via Print nat_ind.

• Example: How do we prove 3 + 0 = 3?

- Use Inductive Case, but need to prove 2 + 0 = 2. How?
- Use Inductive Case, but need to prove 1 + 0 = 1. How?
- Use Inductive Case, but need to prove 0 + 0 = 0. How?
- Use Base Case.

In Coq, an inductive proof is a recursive function

⁵You can take a look e.g. via Print nat_ind.

• Example: How do we prove 3 + 0 = 3?

- Use Inductive Case, but need to prove 2 + 0 = 2. How?
- Use Inductive Case, but need to prove 1 + 0 = 1. How?
- Use Inductive Case, but need to prove 0 + 0 = 0. How?
- Use Base Case.

In Coq, an inductive proof is a recursive function

Every Inductive type has this essential property that each object is constructed out of finitely many steps

⁵You can take a look e.g. via Print nat_ind.

• Example: How do we prove 3 + 0 = 3?

- Use Inductive Case, but need to prove 2 + 0 = 2. How?
- Use Inductive Case, but need to prove 1 + 0 = 1. How?
- Use Inductive Case, but need to prove 0 + 0 = 0. How?
- Use Base Case.

In Coq, an inductive proof is a recursive function

- Every Inductive type has this essential property that each object is constructed out of finitely many steps
- There is an induction principle for every type, and it is automatically generated⁵

⁵You can take a look e.g. via Print nat_ind.

• Coq is a **programming language** (with restricted recursion)

- Coq is a programming language (with restricted recursion)
- > Data is defined inductively, i.e. all values are finite objects

- Coq is a programming language (with restricted recursion)
- > Data is defined inductively, i.e. all values are finite objects
- Functions are defined recursively over this inductive structure

- Coq is a programming language (with restricted recursion)
- > Data is defined inductively, i.e. all values are finite objects
- Functions are defined recursively over this inductive structure
- The Curry-Howard-Correspondence provides clever tricks to encode propositions as types

- Coq is a programming language (with restricted recursion)
- > Data is defined inductively, i.e. all values are finite objects
- Functions are defined recursively over this inductive structure
- The Curry-Howard-Correspondence provides clever tricks to encode propositions as types
- A proposition is proven by a well-typed **proof term**

- Coq is a programming language (with restricted recursion)
- > Data is defined inductively, i.e. all values are finite objects
- Functions are defined recursively over this inductive structure
- The Curry-Howard-Correspondence provides clever tricks to encode propositions as types
- A proposition is proven by a well-typed **proof term**
- A proof by induction is a recipe for constructing proofs for any element
 - This recipe is a recursive function!

- Coq is a programming language (with restricted recursion)
- > Data is defined inductively, i.e. all values are finite objects
- Functions are defined recursively over this inductive structure
- The Curry-Howard-Correspondence provides clever tricks to encode propositions as types
- A proposition is proven by a well-typed **proof term**
- A proof by induction is a recipe for constructing proofs for any element
 - This recipe is a recursive function!
- Tactics assist the user in finding a proof term

Literature

[1] B. Pierce et al., Software Foundations https://softwarefoundations.cis.upenn.edu/ (Free online book series)

[1] G. Smolka, Lecture Notes of Introduction to Computational Logic https://www.ps.uni-saarland.de/courses.html