
Interactive Theorem Proving:
An Intro to the Coq Proof Assistant

Presented by Lukas Convent and Prof. Dr. Martin Leucker as part of the
dependable software course as taught at ISP in Lübeck in 2019.

1

Learning Goals
I Programming : Inductive Data Types and Recursive Functions
I Specifying : Encode Logical Formulas as Types
I Proving : Prove Logical Formulas about Programs

Outline

1. Introduction

2. Coq Programming

3. Propositions as Types

2

Introduction

3

Functional and Imperative Programs

Definition (Imperative Program)
An imperative program p describes a partial function on memory
states: Given some initial state σ, the execution of p on σ either
terminates with a final state σ′ or it diverges. For example, the
program x :=2*x maps state σ = {x 7→ 1, _ 7→ 0} to state
σ′ = {x 7→ 2, _ 7→ 0}

Definition (Functional Program)
A functional program f describes a partial function on values:
Given some input value v, the reduction of the expression f(v)
either terminates in a value v′ or it diverges. For example, the
program f(x) := 2 ∗ x with 1 given as a value, resulting in the
expression f(1), reduces to value 2

4

Program Verification

I We focus on verifying functional programs
I We do not limit ourselves though:

I Imperative programs can be expressed as functional programs
I The typical framework to prove properties about imperative

programs is the Hoare calculus, which can be easily expressed
in out framework

I Our framework is a functional language that allows to:
I Write useful programs
I Write specifications for these programs
I Prove these specifications

I Next: Recap on what it means to prove a logical statement
(such as a specification)

5

Start simple: Propositional Logic
I Syntax

I Formulas ϕ,ψ := p ∈ AP | ⊥ | ϕ→ ψ
I Atomic propositions AP
I (further connectives ¬,∧,∨, ... can be used as notation)

I Semantics
I Truth domain T := {0, 1}
I Interpretations v ∈ AP → T
I Evaluation function

JpKv := v(p)
J⊥Kv := 0

Jϕ→ ψKv :=
{

1 if JϕKv = 0 or JψKv = 1
0 otherwise

I Satisfaction v � ϕ :⇔ JϕKv = 1
Validity � ϕ :⇔ v � ϕ for all v

I ϕ is called a tautology if � ϕ

6

Start simple: Propositional Logic
I Syntax

I Formulas ϕ,ψ := p ∈ AP | ⊥ | ϕ→ ψ
I Atomic propositions AP
I (further connectives ¬,∧,∨, ... can be used as notation)

I Semantics
I Truth domain T := {0, 1}
I Interpretations v ∈ AP → T
I Evaluation function

JpKv := v(p)
J⊥Kv := 0

Jϕ→ ψKv :=
{

1 if JϕKv = 0 or JψKv = 1
0 otherwise

I Satisfaction v � ϕ :⇔ JϕKv = 1
Validity � ϕ :⇔ v � ϕ for all v

I ϕ is called a tautology if � ϕ

6

Why proving?

I Goal: Given ϕ, does � ϕ hold?
I First approach: Evaluate and check JϕKv = 1 for all v

I Problem:
I for Propositional Logic: Possible, but there are 2n

interpretations (where n is the number of vars in ϕ)
I for First-Order Logic: Impossible, there may be infinitely

many interpretations
I Help:

I Use a proof system
I Idea: Construct a finite proof that ϕ holds

I Proof system must be sound :
If ϕ can be proven (` ϕ), then ϕ is valid (� ϕ)

I Proof system may be complete:
If ϕ is valid (� ϕ), then ϕ can be proven (` ϕ)

7

Why proving?

I Goal: Given ϕ, does � ϕ hold?
I First approach: Evaluate and check JϕKv = 1 for all v
I Problem:

I for Propositional Logic: Possible, but there are 2n

interpretations (where n is the number of vars in ϕ)
I for First-Order Logic: Impossible, there may be infinitely

many interpretations

I Help:
I Use a proof system
I Idea: Construct a finite proof that ϕ holds

I Proof system must be sound :
If ϕ can be proven (` ϕ), then ϕ is valid (� ϕ)

I Proof system may be complete:
If ϕ is valid (� ϕ), then ϕ can be proven (` ϕ)

7

Why proving?

I Goal: Given ϕ, does � ϕ hold?
I First approach: Evaluate and check JϕKv = 1 for all v
I Problem:

I for Propositional Logic: Possible, but there are 2n

interpretations (where n is the number of vars in ϕ)
I for First-Order Logic: Impossible, there may be infinitely

many interpretations
I Help:

I Use a proof system
I Idea: Construct a finite proof that ϕ holds

I Proof system must be sound :
If ϕ can be proven (` ϕ), then ϕ is valid (� ϕ)

I Proof system may be complete:
If ϕ is valid (� ϕ), then ϕ can be proven (` ϕ)

7

Proof System for Propositional Logic
I Natural deduction via entailment relation Γ ` ϕ

I Γ is a finite set of formulas ψ1, ψ2, ..., ψn

I “from Γ, one can deduce ϕ”

I Defined by inference rules:

ϕ ∈ Γ
Γ ` ϕ

Assump
Γ, (ϕ → ⊥) ` ⊥

Γ ` ϕ
DoubleNeg

Γ, ψ ` ϕ

Γ ` ψ → ϕ
ImpIntro

Γ ` ψ → ϕ Γ ` ψ

Γ ` ϕ
ImpElim

I This system is sound :
If ϕ can be proven (` ϕ), then ϕ is valid (� ϕ)

I This system is complete:
If ϕ is valid (� ϕ), then ϕ can be proven (` ϕ)

8

Proof System for Propositional Logic
I Natural deduction via entailment relation Γ ` ϕ

I Γ is a finite set of formulas ψ1, ψ2, ..., ψn

I “from Γ, one can deduce ϕ”
I Defined by inference rules:

ϕ ∈ Γ
Γ ` ϕ

Assump
Γ, (ϕ → ⊥) ` ⊥

Γ ` ϕ
DoubleNeg

Γ, ψ ` ϕ

Γ ` ψ → ϕ
ImpIntro

Γ ` ψ → ϕ Γ ` ψ

Γ ` ϕ
ImpElim

I This system is sound :
If ϕ can be proven (` ϕ), then ϕ is valid (� ϕ)

I This system is complete:
If ϕ is valid (� ϕ), then ϕ can be proven (` ϕ)

8

Proof System for Propositional Logic
I Natural deduction via entailment relation Γ ` ϕ

I Γ is a finite set of formulas ψ1, ψ2, ..., ψn

I “from Γ, one can deduce ϕ”
I Defined by inference rules:

ϕ ∈ Γ
Γ ` ϕ

Assump
Γ, (ϕ → ⊥) ` ⊥

Γ ` ϕ
DoubleNeg

Γ, ψ ` ϕ

Γ ` ψ → ϕ
ImpIntro

Γ ` ψ → ϕ Γ ` ψ

Γ ` ϕ
ImpElim

I This system is sound :
If ϕ can be proven (` ϕ), then ϕ is valid (� ϕ)

I This system is complete:
If ϕ is valid (� ϕ), then ϕ can be proven (` ϕ)

8

Proof Trees

I In order to check validity of ϕ := p→ (q → p)...

I ...prove ` ϕ, as witnessed by the following proof tree

p ∈ {p, q}
p, q ` p

Assump

p ` q → p
ImpIntro

` p→ (q → p)
ImpIntro

I By soundness of `, ϕ is valid

9

Proof Trees

I In order to check validity of ϕ := p→ (q → p)...
I ...prove ` ϕ, as witnessed by the following proof tree

p ∈ {p, q}
p, q ` p

Assump

p ` q → p
ImpIntro

` p→ (q → p)
ImpIntro

I By soundness of `, ϕ is valid

9

Proof Trees

I In order to check validity of ϕ := p→ (q → p)...
I ...prove ` ϕ, as witnessed by the following proof tree

p ∈ {p, q}
p, q ` p

Assump

p ` q → p
ImpIntro

` p→ (q → p)
ImpIntro

I By soundness of `, ϕ is valid

9

Proof Trees in Type Systems, 1
I In a typed programming language, we want to check that

term t is of type T

I Terms
1. 3 + 2
2. if true then true else false
3. λn.n
4. λn. (λb. if b then n else n+ n)
5. λn. let sq = n ∗ n in sq ∗ sq

I Types
1. Int
2. Bool
3. Int → Int
4. Int → (Bool → Int)
5. Int → Int

I We write ` t : T if term t has type T
I We can also talk of "soundness" here: A type system is sound

if ` t : T implies that t won’t “crash” on execution. E.g.,
true + 4 crashes

10

Proof Trees in Type Systems, 1
I In a typed programming language, we want to check that

term t is of type T
I Terms

1. 3 + 2
2. if true then true else false
3. λn.n
4. λn. (λb. if b then n else n+ n)
5. λn. let sq = n ∗ n in sq ∗ sq

I Types
1. Int
2. Bool
3. Int → Int
4. Int → (Bool → Int)
5. Int → Int

I We write ` t : T if term t has type T
I We can also talk of "soundness" here: A type system is sound

if ` t : T implies that t won’t “crash” on execution. E.g.,
true + 4 crashes

10

Proof Trees in Type Systems, 1
I In a typed programming language, we want to check that

term t is of type T
I Terms

1. 3 + 2
2. if true then true else false
3. λn.n
4. λn. (λb. if b then n else n+ n)
5. λn. let sq = n ∗ n in sq ∗ sq

I Types
1. Int
2. Bool
3. Int → Int
4. Int → (Bool → Int)
5. Int → Int

I We write ` t : T if term t has type T
I We can also talk of "soundness" here: A type system is sound

if ` t : T implies that t won’t “crash” on execution. E.g.,
true + 4 crashes

10

Proof Trees in Type Systems, 1
I In a typed programming language, we want to check that

term t is of type T
I Terms

1. 3 + 2
2. if true then true else false
3. λn.n
4. λn. (λb. if b then n else n+ n)
5. λn. let sq = n ∗ n in sq ∗ sq

I Types
1. Int
2. Bool
3. Int → Int
4. Int → (Bool → Int)
5. Int → Int

I We write ` t : T if term t has type T

I We can also talk of "soundness" here: A type system is sound
if ` t : T implies that t won’t “crash” on execution. E.g.,
true + 4 crashes

10

Proof Trees in Type Systems, 1
I In a typed programming language, we want to check that

term t is of type T
I Terms

1. 3 + 2
2. if true then true else false
3. λn.n
4. λn. (λb. if b then n else n+ n)
5. λn. let sq = n ∗ n in sq ∗ sq

I Types
1. Int
2. Bool
3. Int → Int
4. Int → (Bool → Int)
5. Int → Int

I We write ` t : T if term t has type T
I We can also talk of "soundness" here: A type system is sound

if ` t : T implies that t won’t “crash” on execution. E.g.,
true + 4 crashes

10

Proof Trees in Type Systems, 2

I To check whether t := λx.(λy.x) is of type
T := Int → (Bool → Int), we check whether there is a proof
tree for ` t : T

I For our example, there is:
(x : Int) ∈ {x : Int, y : Bool}

x : Int, y : Bool ` x : Int
Env

x : Int ` λy.x : Bool → Int
Abs

` λx.(λy.x) : Int → (Bool → Int)
Abs

I In a type system, the inference rules are designed s.t. for every pair
` t : T , there exists at most one proof tree

I t itself witnesses its own proof tree of ` t : T
I Intuition: A term itself represents a syntax tree. Put this tree upside

down. Traverse the tree, thereby annotating types according to the
inference rules. If this works out, you have the proof tree. Otherwise,
there is none.

11

Proof Trees in Type Systems, 2

I To check whether t := λx.(λy.x) is of type
T := Int → (Bool → Int), we check whether there is a proof
tree for ` t : T

I For our example, there is:
(x : Int) ∈ {x : Int, y : Bool}

x : Int, y : Bool ` x : Int
Env

x : Int ` λy.x : Bool → Int
Abs

` λx.(λy.x) : Int → (Bool → Int)
Abs

I In a type system, the inference rules are designed s.t. for every pair
` t : T , there exists at most one proof tree

I t itself witnesses its own proof tree of ` t : T
I Intuition: A term itself represents a syntax tree. Put this tree upside

down. Traverse the tree, thereby annotating types according to the
inference rules. If this works out, you have the proof tree. Otherwise,
there is none.

11

Proof Trees in Type Systems, 2

I To check whether t := λx.(λy.x) is of type
T := Int → (Bool → Int), we check whether there is a proof
tree for ` t : T

I For our example, there is:
(x : Int) ∈ {x : Int, y : Bool}

x : Int, y : Bool ` x : Int
Env

x : Int ` λy.x : Bool → Int
Abs

` λx.(λy.x) : Int → (Bool → Int)
Abs

I In a type system, the inference rules are designed s.t. for every pair
` t : T , there exists at most one proof tree

I t itself witnesses its own proof tree of ` t : T
I Intuition: A term itself represents a syntax tree. Put this tree upside

down. Traverse the tree, thereby annotating types according to the
inference rules. If this works out, you have the proof tree. Otherwise,
there is none.

11

Proof Trees in Type Systems, 2

I To check whether t := λx.(λy.x) is of type
T := Int → (Bool → Int), we check whether there is a proof
tree for ` t : T

I For our example, there is:
(x : Int) ∈ {x : Int, y : Bool}

x : Int, y : Bool ` x : Int
Env

x : Int ` λy.x : Bool → Int
Abs

` λx.(λy.x) : Int → (Bool → Int)
Abs

I In a type system, the inference rules are designed s.t. for every pair
` t : T , there exists at most one proof tree

I t itself witnesses its own proof tree of ` t : T

I Intuition: A term itself represents a syntax tree. Put this tree upside
down. Traverse the tree, thereby annotating types according to the
inference rules. If this works out, you have the proof tree. Otherwise,
there is none.

11

Proof Trees in Type Systems, 2

I To check whether t := λx.(λy.x) is of type
T := Int → (Bool → Int), we check whether there is a proof
tree for ` t : T

I For our example, there is:
(x : Int) ∈ {x : Int, y : Bool}

x : Int, y : Bool ` x : Int
Env

x : Int ` λy.x : Bool → Int
Abs

` λx.(λy.x) : Int → (Bool → Int)
Abs

I In a type system, the inference rules are designed s.t. for every pair
` t : T , there exists at most one proof tree

I t itself witnesses its own proof tree of ` t : T
I Intuition: A term itself represents a syntax tree. Put this tree upside

down. Traverse the tree, thereby annotating types according to the
inference rules. If this works out, you have the proof tree. Otherwise,
there is none.

11

Preview: Type System as a Proof System
I You noticed the similarity between the two proof trees?

p ∈ {p, q}
p, q ` p

Assump

p ` q → p
ImpIntro

` p → (q → p)
ImpIntro

(x : Int) ∈ {x : Int, y : Bool}
x : Int, y : Bool ` x : Int

Env

x : Int ` λy.x : Bool → Int
Abs

` λx.(λy.x) : Int → (Bool → Int)
Abs

I Is it be possible to encode a proof tree for a logic as a proof
tree for a type system?

I It is possible. It has been discovered in 1980 by Howard
(Curry-Howard-Correspondence)

I What do we need?
1. Goal: Find a way of proving a specification ϕ
2. We encode ϕ as a type T
3. We find a term t that is well-typed, i.e. ` t : T
4. But this means that t witnesses a proof tree for T
5. Thus we interpret t as a proof of T and therefore of ϕ!

12

Preview: Type System as a Proof System
I You noticed the similarity between the two proof trees?

p ∈ {p, q}
p, q ` p

Assump

p ` q → p
ImpIntro

` p → (q → p)
ImpIntro

(x : Int) ∈ {x : Int, y : Bool}
x : Int, y : Bool ` x : Int

Env

x : Int ` λy.x : Bool → Int
Abs

` λx.(λy.x) : Int → (Bool → Int)
Abs

I Is it be possible to encode a proof tree for a logic as a proof
tree for a type system?

I It is possible. It has been discovered in 1980 by Howard
(Curry-Howard-Correspondence)

I What do we need?
1. Goal: Find a way of proving a specification ϕ
2. We encode ϕ as a type T
3. We find a term t that is well-typed, i.e. ` t : T
4. But this means that t witnesses a proof tree for T
5. Thus we interpret t as a proof of T and therefore of ϕ!

12

Preview: Type System as a Proof System
I You noticed the similarity between the two proof trees?

p ∈ {p, q}
p, q ` p

Assump

p ` q → p
ImpIntro

` p → (q → p)
ImpIntro

(x : Int) ∈ {x : Int, y : Bool}
x : Int, y : Bool ` x : Int

Env

x : Int ` λy.x : Bool → Int
Abs

` λx.(λy.x) : Int → (Bool → Int)
Abs

I Is it be possible to encode a proof tree for a logic as a proof
tree for a type system?

I It is possible. It has been discovered in 1980 by Howard
(Curry-Howard-Correspondence)

I What do we need?
1. Goal: Find a way of proving a specification ϕ
2. We encode ϕ as a type T
3. We find a term t that is well-typed, i.e. ` t : T
4. But this means that t witnesses a proof tree for T
5. Thus we interpret t as a proof of T and therefore of ϕ!

12

Interactive Theorem Provers
I Proofs are manually written, potentially with some

automatic proof-search aid
I Proofs are completely formal
I Proofs can be automatically checked
I You have to trust in the soundness of the proof checker

I Trust is usually established by providing a minimal base of the
proof checker

I Examples: Coq, Isabelle, Agda
I May be based on type theory, but not necessarily
I Applications

1. Formalized Mathematics, e.g. Four-color theorem in 1976
2. Correctness Properties

I Certified C compiler CompCert, started in 2005
I Soundness of type systems
I Correctness of protocols
I Further theorems about formalisms

3. Generally: Verification where the system model or the property
is “too complex” for automatic methods

13

Interactive Theorem Provers
I Proofs are manually written, potentially with some

automatic proof-search aid
I Proofs are completely formal
I Proofs can be automatically checked
I You have to trust in the soundness of the proof checker

I Trust is usually established by providing a minimal base of the
proof checker

I Examples: Coq, Isabelle, Agda
I May be based on type theory, but not necessarily
I Applications

1. Formalized Mathematics, e.g. Four-color theorem in 1976
2. Correctness Properties

I Certified C compiler CompCert, started in 2005
I Soundness of type systems
I Correctness of protocols
I Further theorems about formalisms

3. Generally: Verification where the system model or the property
is “too complex” for automatic methods

13

Coq Programming

14

Coq
I Coq is an interactive theorem prover
I Main idea: Propositions as Types, Proofs as Terms

(Curry-Howard-Correspondence)
I One can define

I Types (Propositions)
I Well-typed Terms (Proofs)

I The underlying language Gallina
I is a dependently-typed functional programming language
I implements the Calculus of Inductive Constructions
I is not Turing-complete (every function is total)

15

Getting started with Coq
1. Installation

I Win/Mac: Download from https://coq.inria.fr/
I Linux: We recommend installation via OPAM

https://coq.inria.fr/opam/www/using.html
2. IDE

I Recommendation: Coq IDE, shipped with Coq (see screenshot)
I Popular plugin for Emacs: Proof General

16

https://coq.inria.fr/
https://coq.inria.fr/opam/www/using.html

Coq Programming (Inductive Data Types)

I An inductive data type definition introduces a new type and
new well-typed terms

Inductive bool : Type :=
| true : bool
| false : bool.

Inductive nat : Type :=
| O : nat
| S : nat → nat.

I bool, nat are types
I true, false, O, S are value constructors

17

Coq Programming (Inductive Data Types)

I An inductive data type definition introduces a new type and
new well-typed terms

Inductive bool : Type :=
| true : bool
| false : bool.

Inductive nat : Type :=
| O : nat
| S : nat → nat.

I bool, nat are types
I true, false, O, S are value constructors

17

Coq Programming (Definitions)

I A Definition gives a name to a term

Definition two: nat := S(S O).
Definition three: nat := S(S(S O)).

I Definitions can be unfolded, which is a kind of reduction
I Two terms are convertible (≡) if they reduce to the same term
I E.g., S two and three are convertible

S two
≡ S(S(S O))
≡ three

I Intuition: Convertibility is “syntactic equality up-to certain
manipulations”

18

Coq Programming (Definitions)

I A Definition gives a name to a term

Definition two: nat := S(S O).
Definition three: nat := S(S(S O)).

I Definitions can be unfolded, which is a kind of reduction
I Two terms are convertible (≡) if they reduce to the same term
I E.g., S two and three are convertible

S two
≡ S(S(S O))
≡ three

I Intuition: Convertibility is “syntactic equality up-to certain
manipulations”

18

Coq Programming (Definitions)

I A Definition gives a name to a term

Definition two: nat := S(S O).
Definition three: nat := S(S(S O)).

I Definitions can be unfolded, which is a kind of reduction
I Two terms are convertible (≡) if they reduce to the same term
I E.g., S two and three are convertible

S two
≡ S(S(S O))
≡ three

I Intuition: Convertibility is “syntactic equality up-to certain
manipulations”

18

Coq Programming (Functions, Pattern Matching)
I We can define functions that use pattern matching

Definition negb : bool → bool :=
fun x ⇒ match x with

| true ⇒ false
| false ⇒ true
end.

I fun x ⇒ . . . introduces a function (anonymous, “λ”)
I match . . . with | . . . end pattern-matches
I Both constructs introduce a form of reduction and thus of

convertibility

negb true
≡ (fun x ⇒ . . .) true
≡ match true with | true ⇒ false | . . .
≡ false

19

Coq Programming (Functions, Pattern Matching)
I We can define functions that use pattern matching

Definition negb : bool → bool :=
fun x ⇒ match x with

| true ⇒ false
| false ⇒ true
end.

I fun x ⇒ . . . introduces a function (anonymous, “λ”)
I match . . . with | . . . end pattern-matches

I Both constructs introduce a form of reduction and thus of
convertibility

negb true
≡ (fun x ⇒ . . .) true
≡ match true with | true ⇒ false | . . .
≡ false

19

Coq Programming (Functions, Pattern Matching)
I We can define functions that use pattern matching

Definition negb : bool → bool :=
fun x ⇒ match x with

| true ⇒ false
| false ⇒ true
end.

I fun x ⇒ . . . introduces a function (anonymous, “λ”)
I match . . . with | . . . end pattern-matches
I Both constructs introduce a form of reduction and thus of

convertibility

negb true
≡ (fun x ⇒ . . .) true
≡ match true with | true ⇒ false | . . .
≡ false

19

Coq Programming (Short Notation for Functions)

I Recall our function

Definition negb : bool → bool :=
fun x ⇒ match x with

| true ⇒ false
| false ⇒ true
end.

I We can use the following short notation

Definition negb (x: bool) : bool :=
match x with
| true ⇒ false
| false ⇒ true
end.

20

Coq Programming (Type-Checking)

I In Coq, every term must be well-typed
I What does that mean?

I We write Γ ` t : T and call it a (typing) judgement
I “Under context Γ, term t has type T”
I Context Γ is a list of items t : T
I E.g., we have x : bool ` negb x : bool

...but not x : nat ` negb x : bool

I Coq can try to find a type T for Γ, t (a.k.a. type inference,
generally undecidable)

I Coq decides for a given judgement whether it holds (a.k.a.
type-checking)

21

Coq Programming (Type-Checking)

I In Coq, every term must be well-typed
I What does that mean?

I We write Γ ` t : T and call it a (typing) judgement
I “Under context Γ, term t has type T”
I Context Γ is a list of items t : T
I E.g., we have x : bool ` negb x : bool

...but not x : nat ` negb x : bool

I Coq can try to find a type T for Γ, t (a.k.a. type inference,
generally undecidable)

I Coq decides for a given judgement whether it holds (a.k.a.
type-checking)

21

Coq Programming (Type-Checking)

I In Coq, every term must be well-typed
I What does that mean?

I We write Γ ` t : T and call it a (typing) judgement
I “Under context Γ, term t has type T”
I Context Γ is a list of items t : T
I E.g., we have x : bool ` negb x : bool

...but not x : nat ` negb x : bool

I Coq can try to find a type T for Γ, t (a.k.a. type inference,
generally undecidable)

I Coq decides for a given judgement whether it holds (a.k.a.
type-checking)

21

Coq Programming (Type-Checking, Reducing in Coq)

I Type-infer terms and compute (reduce) terms

Check (negb true). negb true: bool
Compute (negb true). false: bool

I Here, the context Γ is considered by Coq but not explicitly
output

22

Coq Programming (Recursive Functions)

I We can define recursive functions

Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I Above was really a short notation for the following:

Definition plus : nat → nat → nat :=
fix f (m n: nat) :=

match m with
| O ⇒ n
| S m' ⇒ S (f m' n)
end.

23

Coq Programming (Recursive Functions)

I We can define recursive functions

Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I Above was really a short notation for the following:

Definition plus : nat → nat → nat :=
fix f (m n: nat) :=
match m with
| O ⇒ n
| S m' ⇒ S (f m' n)
end.

23

Coq Programming (Recursion must be structural)

Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I Recursive functions in Coq always terminate because only
structural recursion is allowed

I Structural recursion means that recursion is only applied to
sub-structures

I Here: m' is a sub-structure of S m'

I Why this restriction? Remember: Proofs are programs, and
non-terminating proofs must be avoided!
(more later)

24

Coq Programming (Recursion must be structural)

Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I Recursive functions in Coq always terminate because only
structural recursion is allowed

I Structural recursion means that recursion is only applied to
sub-structures

I Here: m' is a sub-structure of S m'

I Why this restriction? Remember: Proofs are programs, and
non-terminating proofs must be avoided!
(more later)

24

Coq Programming (Recursion must be structural)

Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I Recursive functions in Coq always terminate because only
structural recursion is allowed

I Structural recursion means that recursion is only applied to
sub-structures

I Here: m' is a sub-structure of S m'

I Why this restriction? Remember: Proofs are programs, and
non-terminating proofs must be avoided!
(more later)

24

Coq Programming (Prelude and Notation)

I Standard data types, functions, notation are pre-defined via
the Prelude1

I This allows us to write a term like 3 + 2 instead of
plus S(S(S O)) S(S O).

I We use the nice notation from now on wherever possible

1https://coq.inria.fr/library/Coq.Init.Prelude.html

25

https://coq.inria.fr/library/Coq.Init.Prelude.html

Coq Programming (Polymorphic Data Types, 1)

I It is often useful to parameterize a data type to avoid multiple
definitions such as natList, boolList etc.

Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I We say that list is polymorphic in its parameter X
I We say that list is a type constructor (a function that

constructs a type)
I Applying this type constructor yields

I list nat: Type
I list bool: Type
I ...

26

Coq Programming (Polymorphic Data Types, 1)

I It is often useful to parameterize a data type to avoid multiple
definitions such as natList, boolList etc.

Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I We say that list is polymorphic in its parameter X

I We say that list is a type constructor (a function that
constructs a type)

I Applying this type constructor yields
I list nat: Type
I list bool: Type
I ...

26

Coq Programming (Polymorphic Data Types, 1)

I It is often useful to parameterize a data type to avoid multiple
definitions such as natList, boolList etc.

Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I We say that list is polymorphic in its parameter X
I We say that list is a type constructor (a function that

constructs a type)

I Applying this type constructor yields
I list nat: Type
I list bool: Type
I ...

26

Coq Programming (Polymorphic Data Types, 1)

I It is often useful to parameterize a data type to avoid multiple
definitions such as natList, boolList etc.

Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I We say that list is polymorphic in its parameter X
I We say that list is a type constructor (a function that

constructs a type)
I Applying this type constructor yields

I list nat: Type
I list bool: Type
I ...

26

Coq Programming (Polymorphic Data Types, 2)
In the parameterized definition
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

... the parameter X can be “multiplied-out” to ...
Inductive list : Type → Type :=
| nil: ∀ (X: Type), list X
| cons: ∀ (X: Type), X → list X → list X.

I The following judgements are introduced
I list: Type → Type
I nil: ∀(X: Type), list X
I cons: ∀(X: Type), X → list X → list X

I The definitions are isomorphic (modulo technicalities), but the
parameterized definition emphasises that the structure of
list terms is independ. of the choice of the "type of
content" X

27

Coq Programming (Polymorphic Data Types, 2)
In the parameterized definition
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

... the parameter X can be “multiplied-out” to ...
Inductive list : Type → Type :=
| nil: ∀ (X: Type), list X
| cons: ∀ (X: Type), X → list X → list X.

I The following judgements are introduced
I list: Type → Type
I nil: ∀(X: Type), list X
I cons: ∀(X: Type), X → list X → list X

I The definitions are isomorphic (modulo technicalities), but the
parameterized definition emphasises that the structure of
list terms is independ. of the choice of the "type of
content" X

27

Coq Programming (Polymorphic Data Types, 2)
In the parameterized definition
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

... the parameter X can be “multiplied-out” to ...
Inductive list : Type → Type :=
| nil: ∀ (X: Type), list X
| cons: ∀ (X: Type), X → list X → list X.

I The following judgements are introduced
I list: Type → Type
I nil: ∀(X: Type), list X
I cons: ∀(X: Type), X → list X → list X

I The definitions are isomorphic (modulo technicalities), but the
parameterized definition emphasises that the structure of
list terms is independ. of the choice of the "type of
content" X

27

Coq Programming (Implicit Parameters, 1)

Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I Recall that this introduces the judgements
nil: ∀(X: Type), list X
cons: ∀(X: Type), X → list X → list X

I ... so the value constructors must be instantiated, e.g.
cons nat 42 (nil nat): list nat

I 42 is a nat, so X must be instantiated by nat. Can we let
Coq infer this and simply write
cons 42 nil: list nat
instead?

I Yes! (See next slide)

28

Coq Programming (Implicit Parameters, 1)

Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I Recall that this introduces the judgements
nil: ∀(X: Type), list X
cons: ∀(X: Type), X → list X → list X

I ... so the value constructors must be instantiated, e.g.
cons nat 42 (nil nat): list nat

I 42 is a nat, so X must be instantiated by nat. Can we let
Coq infer this and simply write
cons 42 nil: list nat
instead?

I Yes! (See next slide)

28

Coq Programming (Implicit Parameters, 1)

Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I Recall that this introduces the judgements
nil: ∀(X: Type), list X
cons: ∀(X: Type), X → list X → list X

I ... so the value constructors must be instantiated, e.g.
cons nat 42 (nil nat): list nat

I 42 is a nat, so X must be instantiated by nat. Can we let
Coq infer this and simply write
cons 42 nil: list nat
instead?

I Yes! (See next slide)

28

Coq Programming (Implicit Parameters, 1)

Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I Recall that this introduces the judgements
nil: ∀(X: Type), list X
cons: ∀(X: Type), X → list X → list X

I ... so the value constructors must be instantiated, e.g.
cons nat 42 (nil nat): list nat

I 42 is a nat, so X must be instantiated by nat. Can we let
Coq infer this and simply write
cons 42 nil: list nat
instead?

I Yes! (See next slide)

28

Coq Programming (Implicit Parameters, 2)
I Recall our example term:

cons nat 42 (nil nat) : list nat

I We can manually mark arguments as implicit or enable this by
default via

Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I X is strictly implicit for cons (alway inferrable)
I X is contextually implicit for nil (sometimes inferrable)
I This allows to write the example term as:

cons 42 nil : list nat
I But we lack the context to infer nil : list nat
I There is further notation2: 42::nil : list nat

2use Require Import Coq.Lists.List.
29

Coq Programming (Implicit Parameters, 2)
I Recall our example term:

cons nat 42 (nil nat) : list nat
I We can manually mark arguments as implicit or enable this by

default via

Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I X is strictly implicit for cons (alway inferrable)
I X is contextually implicit for nil (sometimes inferrable)
I This allows to write the example term as:

cons 42 nil : list nat
I But we lack the context to infer nil : list nat
I There is further notation2: 42::nil : list nat

2use Require Import Coq.Lists.List.
29

Coq Programming (Implicit Parameters, 2)
I Recall our example term:

cons nat 42 (nil nat) : list nat
I We can manually mark arguments as implicit or enable this by

default via

Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I X is strictly implicit for cons (alway inferrable)

I X is contextually implicit for nil (sometimes inferrable)
I This allows to write the example term as:

cons 42 nil : list nat
I But we lack the context to infer nil : list nat
I There is further notation2: 42::nil : list nat

2use Require Import Coq.Lists.List.
29

Coq Programming (Implicit Parameters, 2)
I Recall our example term:

cons nat 42 (nil nat) : list nat
I We can manually mark arguments as implicit or enable this by

default via

Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I X is strictly implicit for cons (alway inferrable)
I X is contextually implicit for nil (sometimes inferrable)

I This allows to write the example term as:
cons 42 nil : list nat

I But we lack the context to infer nil : list nat
I There is further notation2: 42::nil : list nat

2use Require Import Coq.Lists.List.
29

Coq Programming (Implicit Parameters, 2)
I Recall our example term:

cons nat 42 (nil nat) : list nat
I We can manually mark arguments as implicit or enable this by

default via

Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I X is strictly implicit for cons (alway inferrable)
I X is contextually implicit for nil (sometimes inferrable)
I This allows to write the example term as:

cons 42 nil : list nat

I But we lack the context to infer nil : list nat
I There is further notation2: 42::nil : list nat

2use Require Import Coq.Lists.List.
29

Coq Programming (Implicit Parameters, 2)
I Recall our example term:

cons nat 42 (nil nat) : list nat
I We can manually mark arguments as implicit or enable this by

default via

Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I X is strictly implicit for cons (alway inferrable)
I X is contextually implicit for nil (sometimes inferrable)
I This allows to write the example term as:

cons 42 nil : list nat
I But we lack the context to infer nil : list nat

I There is further notation2: 42::nil : list nat

2use Require Import Coq.Lists.List.
29

Coq Programming (Implicit Parameters, 2)
I Recall our example term:

cons nat 42 (nil nat) : list nat
I We can manually mark arguments as implicit or enable this by

default via

Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X → list X → list X.

I X is strictly implicit for cons (alway inferrable)
I X is contextually implicit for nil (sometimes inferrable)
I This allows to write the example term as:

cons 42 nil : list nat
I But we lack the context to infer nil : list nat
I There is further notation2: 42::nil : list nat

2use Require Import Coq.Lists.List.
29

Coq Programming (Implicit Parameters, 3)

I Why do we have to bother about explicit parameters in
expressions?

I In standard programming languages, parameters in terms can
be simply deduced by the type checker and are therefore
implicit, i.e. they are omitted in terms

I Here however, parameters are more subtle and cannot always
be deduced

I Take-away: If we are using the usual programming constructs,
we just use the options

Set Implicit Arguments.
Set Contextual Implicit.

and don’t have to care about the majority of parameters!

30

Propositions as Types

31

The Idea, 1

I We have seen a fairly standard functional programming
language (with restricted recursion)

I But wasn’t Coq about giving proofs of propositions about
programs?

I Roadmap: We add very few features to the language and
show how we can prove propositions within the language, as
opposed to using some meta framework

I We need to establish the following mechanisms:
I A proposition (logical statement) is encoded as a type
I A proof of a proposition is encoded as a term of that type

I The idea of using propositions as types is also called
Curry-Howard-Correspondence

32

The Idea, 1

I We have seen a fairly standard functional programming
language (with restricted recursion)

I But wasn’t Coq about giving proofs of propositions about
programs?

I Roadmap: We add very few features to the language and
show how we can prove propositions within the language, as
opposed to using some meta framework

I We need to establish the following mechanisms:
I A proposition (logical statement) is encoded as a type
I A proof of a proposition is encoded as a term of that type

I The idea of using propositions as types is also called
Curry-Howard-Correspondence

32

The Idea, 1

I We have seen a fairly standard functional programming
language (with restricted recursion)

I But wasn’t Coq about giving proofs of propositions about
programs?

I Roadmap: We add very few features to the language and
show how we can prove propositions within the language, as
opposed to using some meta framework

I We need to establish the following mechanisms:
I A proposition (logical statement) is encoded as a type
I A proof of a proposition is encoded as a term of that type

I The idea of using propositions as types is also called
Curry-Howard-Correspondence

32

The Idea, 1

I We have seen a fairly standard functional programming
language (with restricted recursion)

I But wasn’t Coq about giving proofs of propositions about
programs?

I Roadmap: We add very few features to the language and
show how we can prove propositions within the language, as
opposed to using some meta framework

I We need to establish the following mechanisms:
I A proposition (logical statement) is encoded as a type
I A proof of a proposition is encoded as a term of that type

I The idea of using propositions as types is also called
Curry-Howard-Correspondence

32

The Idea, 1

I We have seen a fairly standard functional programming
language (with restricted recursion)

I But wasn’t Coq about giving proofs of propositions about
programs?

I Roadmap: We add very few features to the language and
show how we can prove propositions within the language, as
opposed to using some meta framework

I We need to establish the following mechanisms:
I A proposition (logical statement) is encoded as a type
I A proof of a proposition is encoded as a term of that type

I The idea of using propositions as types is also called
Curry-Howard-Correspondence

32

The Idea, 2
Spoilers:

Implication P → Q
Conjunction P ∧Q
Disjunction P ∨Q
Top >
Bottom ⊥

Univ. Qu. ∀(x : A), P (x)
Exis. Qu. ∃(x : A), P (x)

Modus Ponens:
From P → Q and P one de-
duces Q

There is a proof tree for P

=̃
=̃
=̃
=̃
=̃

=̃
=̃

=̃

=̃

Funct. type P → Q
Product type P × Q
Sum type P + Q
Unit type 1
Empty type 0

Π-types
Σ-types

Function application:
f: P → Q and p: P
gives f p: Q

There is a term t such
that t: P

33

Top and Bottom

I Let’s define the proposition > (“truth”)
I There should be a proof for >

Inductive True : Prop :=
I : True.

I Let’s define the proposition ⊥ (“falsity”)
I There should be no proof for ⊥

Inductive False : Prop :=.

I In Coq, there is a special type universe for propositions, called
Prop (more about universes later)

I From now on, we write > for True and ⊥ for False

34

Top and Bottom

I Let’s define the proposition > (“truth”)
I There should be a proof for >

Inductive True : Prop :=
I : True.

I Let’s define the proposition ⊥ (“falsity”)
I There should be no proof for ⊥

Inductive False : Prop :=.

I In Coq, there is a special type universe for propositions, called
Prop (more about universes later)

I From now on, we write > for True and ⊥ for False

34

Top and Bottom

I Let’s define the proposition > (“truth”)
I There should be a proof for >

Inductive True : Prop :=
I : True.

I Let’s define the proposition ⊥ (“falsity”)
I There should be no proof for ⊥

Inductive False : Prop :=.

I In Coq, there is a special type universe for propositions, called
Prop (more about universes later)

I From now on, we write > for True and ⊥ for False

34

Conjunction

I We now come to our first connective, conjunction

Inductive and (A B: Prop) : Prop :=
conj : A → B → and A B.

I and is a type constructor (better: Prop constructor):
I Given two Prop’s, it establishes a new Prop
I The two Prop’s are parameters (implicit for conj)
I There is notation A ∧ B for and A B

I How do you prove A ∧ B?
I Give proofs a: A and b: B and apply conj to them
I Example: Prove >∧ >

Definition t_and_t: > ∧ > :=
conj I I.

35

Conjunction

I We now come to our first connective, conjunction

Inductive and (A B: Prop) : Prop :=
conj : A → B → and A B.

I and is a type constructor (better: Prop constructor):
I Given two Prop’s, it establishes a new Prop
I The two Prop’s are parameters (implicit for conj)
I There is notation A ∧ B for and A B

I How do you prove A ∧ B?
I Give proofs a: A and b: B and apply conj to them
I Example: Prove >∧ >

Definition t_and_t: > ∧ > :=
conj I I.

35

Conjunction

I We now come to our first connective, conjunction

Inductive and (A B: Prop) : Prop :=
conj : A → B → and A B.

I and is a type constructor (better: Prop constructor):
I Given two Prop’s, it establishes a new Prop
I The two Prop’s are parameters (implicit for conj)
I There is notation A ∧ B for and A B

I How do you prove A ∧ B?

I Give proofs a: A and b: B and apply conj to them
I Example: Prove >∧ >

Definition t_and_t: > ∧ > :=
conj I I.

35

Conjunction

I We now come to our first connective, conjunction

Inductive and (A B: Prop) : Prop :=
conj : A → B → and A B.

I and is a type constructor (better: Prop constructor):
I Given two Prop’s, it establishes a new Prop
I The two Prop’s are parameters (implicit for conj)
I There is notation A ∧ B for and A B

I How do you prove A ∧ B?
I Give proofs a: A and b: B and apply conj to them

I Example: Prove >∧ >

Definition t_and_t: > ∧ > :=
conj I I.

35

Conjunction

I We now come to our first connective, conjunction

Inductive and (A B: Prop) : Prop :=
conj : A → B → and A B.

I and is a type constructor (better: Prop constructor):
I Given two Prop’s, it establishes a new Prop
I The two Prop’s are parameters (implicit for conj)
I There is notation A ∧ B for and A B

I How do you prove A ∧ B?
I Give proofs a: A and b: B and apply conj to them
I Example: Prove >∧ >

Definition t_and_t: > ∧ > :=
conj I I.

35

Disjunction
I We now come to our second connective, disjunction

Inductive or (A B: Prop) : Prop :=
| or_introl : A → or A B
| or_intror : B → or A B.

I or is a type constructor (better: Prop constructor):
I Given two Prop’s, it establishes a new Prop
I The two Prop’s are parameters (implicit for or_introl,

or_intror)
I There is notation A ∨ B for or A B

I How do you prove A ∨ B?
I Prove a: A and apply or_introl or

prove b: B and apply or_intror
I Example: Prove ⊥∨ >

Definition f_or_t: ⊥ ∨ > :=
or_intror I.

36

Disjunction
I We now come to our second connective, disjunction

Inductive or (A B: Prop) : Prop :=
| or_introl : A → or A B
| or_intror : B → or A B.

I or is a type constructor (better: Prop constructor):
I Given two Prop’s, it establishes a new Prop
I The two Prop’s are parameters (implicit for or_introl,

or_intror)
I There is notation A ∨ B for or A B

I How do you prove A ∨ B?
I Prove a: A and apply or_introl or

prove b: B and apply or_intror
I Example: Prove ⊥∨ >

Definition f_or_t: ⊥ ∨ > :=
or_intror I.

36

Disjunction
I We now come to our second connective, disjunction

Inductive or (A B: Prop) : Prop :=
| or_introl : A → or A B
| or_intror : B → or A B.

I or is a type constructor (better: Prop constructor):
I Given two Prop’s, it establishes a new Prop
I The two Prop’s are parameters (implicit for or_introl,

or_intror)
I There is notation A ∨ B for or A B

I How do you prove A ∨ B?

I Prove a: A and apply or_introl or
prove b: B and apply or_intror

I Example: Prove ⊥∨ >

Definition f_or_t: ⊥ ∨ > :=
or_intror I.

36

Disjunction
I We now come to our second connective, disjunction

Inductive or (A B: Prop) : Prop :=
| or_introl : A → or A B
| or_intror : B → or A B.

I or is a type constructor (better: Prop constructor):
I Given two Prop’s, it establishes a new Prop
I The two Prop’s are parameters (implicit for or_introl,

or_intror)
I There is notation A ∨ B for or A B

I How do you prove A ∨ B?
I Prove a: A and apply or_introl or

prove b: B and apply or_intror

I Example: Prove ⊥∨ >

Definition f_or_t: ⊥ ∨ > :=
or_intror I.

36

Disjunction
I We now come to our second connective, disjunction

Inductive or (A B: Prop) : Prop :=
| or_introl : A → or A B
| or_intror : B → or A B.

I or is a type constructor (better: Prop constructor):
I Given two Prop’s, it establishes a new Prop
I The two Prop’s are parameters (implicit for or_introl,

or_intror)
I There is notation A ∨ B for or A B

I How do you prove A ∨ B?
I Prove a: A and apply or_introl or

prove b: B and apply or_intror
I Example: Prove ⊥∨ >

Definition f_or_t: ⊥ ∨ > :=
or_intror I.

36

Types, so far

I Let’s recall what we know about types in Coq so far
I First, how are types formed? We saw 3 possibilities:

1a) Inductive types (atomic)
I bool : Type

I with value true, false
I ⊥ : Prop

I no proofs

1b) Inductive types (applied type constructors)
I list nat : Type

I with value 1::2::3::nil, ...
I >∧ > : Prop

I with proof conj I I

37

Types, so far

2) Function Types
I bool → bool : Type

I with values negb, (fun x ⇒ x), ...
I nat → nat → nat : Type

I with values plus, ...
I ...

I ⊥→ ⊥ : Prop
I with... a proof? Yes: fun x ⇒ x

I >→ ⊥ : Prop
I with... a proof? No.

37

Types, so far
3) Polymorphic Types
I ∀ (X: Type), list X : Type

I with one value: nil
I ∀ (X: Type), X → list X : Type

I with value fun (X: Type) (x: X) ⇒ x::x::x::nil
I ...

I ∀ (A B: Prop), A → B → A ∧ B : Prop
I with proof conj

I ∀ (P: Prop), >∨ P : Prop
I with... a proof? Yes:

fun (_: Prop) ⇒ or_introl I

I Polymorphic types are function types that take types as
arguments

I Polymorphic values are functions that take types as
arguments

37

Polymorphic Propositions
I As we have seen, propositions can be polymorphic, too
I Example: For all propositions P, we have >∨ P

I We formulate and prove this proposition as follows:

Definition t_or_p:
∀ (P: Prop), > ∨ P :=
fun (_: Prop) ⇒ or_introl I.

I Short notation:

Definition t_or_p:
∀ P, > ∨ P :=
fun _ ⇒ or_introl I.

I The type is polymorphic in P
I The proof is polymorphic in P

38

Polymorphic Propositions
I As we have seen, propositions can be polymorphic, too
I Example: For all propositions P, we have >∨ P
I We formulate and prove this proposition as follows:

Definition t_or_p:
∀ (P: Prop), > ∨ P :=
fun (_: Prop) ⇒ or_introl I.

I Short notation:

Definition t_or_p:
∀ P, > ∨ P :=
fun _ ⇒ or_introl I.

I The type is polymorphic in P
I The proof is polymorphic in P

38

Polymorphic Propositions
I As we have seen, propositions can be polymorphic, too
I Example: For all propositions P, we have >∨ P
I We formulate and prove this proposition as follows:

Definition t_or_p:
∀ (P: Prop), > ∨ P :=
fun (_: Prop) ⇒ or_introl I.

I Short notation:

Definition t_or_p:
∀ P, > ∨ P :=
fun _ ⇒ or_introl I.

I The type is polymorphic in P
I The proof is polymorphic in P

38

Polymorphic Propositions
I As we have seen, propositions can be polymorphic, too
I Example: For all propositions P, we have >∨ P
I We formulate and prove this proposition as follows:

Definition t_or_p:
∀ (P: Prop), > ∨ P :=
fun (_: Prop) ⇒ or_introl I.

I Short notation:

Definition t_or_p:
∀ P, > ∨ P :=
fun _ ⇒ or_introl I.

I The type is polymorphic in P

I The proof is polymorphic in P

38

Polymorphic Propositions
I As we have seen, propositions can be polymorphic, too
I Example: For all propositions P, we have >∨ P
I We formulate and prove this proposition as follows:

Definition t_or_p:
∀ (P: Prop), > ∨ P :=
fun (_: Prop) ⇒ or_introl I.

I Short notation:

Definition t_or_p:
∀ P, > ∨ P :=
fun _ ⇒ or_introl I.

I The type is polymorphic in P
I The proof is polymorphic in P

38

Implication

I We now come to our third logical connective, implication

I You have seen it, as it is already built-in: An implication is a
function type!

I Example: Prove that for all propositions P, we have
P → >∧ P.

Definition true_p:
∀ (P: Prop), P → (> ∧ P) :=
fun (P: Prop) (p: P) ⇒ conj I p.

I Short notation:

Definition true_p:
∀ (P: Prop), P → (> ∧ P) :=
fun P p ⇒ conj I p.

39

Implication

I We now come to our third logical connective, implication
I You have seen it, as it is already built-in: An implication is a

function type!

I Example: Prove that for all propositions P, we have
P → >∧ P.

Definition true_p:
∀ (P: Prop), P → (> ∧ P) :=
fun (P: Prop) (p: P) ⇒ conj I p.

I Short notation:

Definition true_p:
∀ (P: Prop), P → (> ∧ P) :=
fun P p ⇒ conj I p.

39

Implication

I We now come to our third logical connective, implication
I You have seen it, as it is already built-in: An implication is a

function type!
I Example: Prove that for all propositions P, we have

P → >∧ P.

Definition true_p:
∀ (P: Prop), P → (> ∧ P) :=
fun (P: Prop) (p: P) ⇒ conj I p.

I Short notation:

Definition true_p:
∀ (P: Prop), P → (> ∧ P) :=
fun P p ⇒ conj I p.

39

Implication

I We now come to our third logical connective, implication
I You have seen it, as it is already built-in: An implication is a

function type!
I Example: Prove that for all propositions P, we have

P → >∧ P.

Definition true_p:
∀ (P: Prop), P → (> ∧ P) :=
fun (P: Prop) (p: P) ⇒ conj I p.

I Short notation:

Definition true_p:
∀ (P: Prop), P → (> ∧ P) :=
fun P p ⇒ conj I p.

39

Proving with Tactics, 1
I A conjunction can be proven as follows

Definition t_and_t: > ∧ > :=
conj I I.

I We call the value of a proposition a proof term
I This proof term can equivalently be obtained via tactics

Lemma t_and_t: > ∧ >.
Proof.

apply conj.
− apply I.
− apply I.

Qed.

I Tactics generate proof terms
I Display proof term via Print t_and_t.

40

Proving with Tactics, 1
I A conjunction can be proven as follows

Definition t_and_t: > ∧ > :=
conj I I.

I We call the value of a proposition a proof term

I This proof term can equivalently be obtained via tactics

Lemma t_and_t: > ∧ >.
Proof.

apply conj.
− apply I.
− apply I.

Qed.

I Tactics generate proof terms
I Display proof term via Print t_and_t.

40

Proving with Tactics, 1
I A conjunction can be proven as follows

Definition t_and_t: > ∧ > :=
conj I I.

I We call the value of a proposition a proof term
I This proof term can equivalently be obtained via tactics

Lemma t_and_t: > ∧ >.
Proof.
apply conj.
− apply I.
− apply I.

Qed.

I Tactics generate proof terms
I Display proof term via Print t_and_t.

40

Proving with Tactics, 1
I A conjunction can be proven as follows

Definition t_and_t: > ∧ > :=
conj I I.

I We call the value of a proposition a proof term
I This proof term can equivalently be obtained via tactics

Lemma t_and_t: > ∧ >.
Proof.
apply conj.
− apply I.
− apply I.

Qed.

I Tactics generate proof terms

I Display proof term via Print t_and_t.

40

Proving with Tactics, 1
I A conjunction can be proven as follows

Definition t_and_t: > ∧ > :=
conj I I.

I We call the value of a proposition a proof term
I This proof term can equivalently be obtained via tactics

Lemma t_and_t: > ∧ >.
Proof.
apply conj.
− apply I.
− apply I.

Qed.

I Tactics generate proof terms
I Display proof term via Print t_and_t.

40

Proving with Tactics, 2

Lemma t_and_t: > ∧ >.
Proof.

apply conj.
− apply I.
− apply I.

Qed.

I Enables backwards-directed reasoning

I The goal (proof obligation) is simplified/divided/reduced to
smaller subgoals

I apply can be used to apply a value constructor conj
I If the value constructor expects further arguments, further

subgoals are generated
I This is the case in our example: We have two subgoals > and
>

41

Proving with Tactics, 2

Lemma t_and_t: > ∧ >.
Proof.

apply conj.
− apply I.
− apply I.

Qed.

I Enables backwards-directed reasoning
I The goal (proof obligation) is simplified/divided/reduced to

smaller subgoals

I apply can be used to apply a value constructor conj
I If the value constructor expects further arguments, further

subgoals are generated
I This is the case in our example: We have two subgoals > and
>

41

Proving with Tactics, 2

Lemma t_and_t: > ∧ >.
Proof.

apply conj.
− apply I.
− apply I.

Qed.

I Enables backwards-directed reasoning
I The goal (proof obligation) is simplified/divided/reduced to

smaller subgoals
I apply can be used to apply a value constructor conj

I If the value constructor expects further arguments, further
subgoals are generated

I This is the case in our example: We have two subgoals > and
>

41

Proving with Tactics, 2

Lemma t_and_t: > ∧ >.
Proof.

apply conj.
− apply I.
− apply I.

Qed.

I Enables backwards-directed reasoning
I The goal (proof obligation) is simplified/divided/reduced to

smaller subgoals
I apply can be used to apply a value constructor conj
I If the value constructor expects further arguments, further

subgoals are generated

I This is the case in our example: We have two subgoals > and
>

41

Proving with Tactics, 2

Lemma t_and_t: > ∧ >.
Proof.

apply conj.
− apply I.
− apply I.

Qed.

I Enables backwards-directed reasoning
I The goal (proof obligation) is simplified/divided/reduced to

smaller subgoals
I apply can be used to apply a value constructor conj
I If the value constructor expects further arguments, further

subgoals are generated
I This is the case in our example: We have two subgoals > and
>

41

Tactic: exact

Lemma t_and_t: > ∧ >.
Proof.

exact (conj I I).
Qed.

I By exact, one can give an explicit proof term

I In this example, we give the whole proof term just by a single
exact, which is equivalent to the two other definitions of
t_and_t

42

Tactic: exact

Lemma t_and_t: > ∧ >.
Proof.

exact (conj I I).
Qed.

I By exact, one can give an explicit proof term
I In this example, we give the whole proof term just by a single

exact, which is equivalent to the two other definitions of
t_and_t

42

Tactic: intros

Lemma p_q_p: ∀ (P Q: Prop), P → Q → P.
Proof.

intros P Q p q.
apply p.

Qed.

I By intros, arguments are assumed

I They are now available as hypotheses in the context Γ
I Correspondence to proof terms:

intros x y. introduces fun x y ⇒ . . .

43

Tactic: intros

Lemma p_q_p: ∀ (P Q: Prop), P → Q → P.
Proof.

intros P Q p q.
apply p.

Qed.

I By intros, arguments are assumed
I They are now available as hypotheses in the context Γ

I Correspondence to proof terms:
intros x y. introduces fun x y ⇒ . . .

43

Tactic: intros

Lemma p_q_p: ∀ (P Q: Prop), P → Q → P.
Proof.

intros P Q p q.
apply p.

Qed.

I By intros, arguments are assumed
I They are now available as hypotheses in the context Γ
I Correspondence to proof terms:

intros x y. introduces fun x y ⇒ . . .

43

Tactic: destruct (1)

Lemma pq_p: ∀ (P Q: Prop), P ∧ Q → P.
Proof.

intros P Q H.
destruct H as [p q].
apply p.

Qed.

I By destruct, a hypothesis is case-analyzed

I In this example, there is only one case, conj
I Correspondence to proof terms:

Introduces match . . . with conj p q ⇒ . . .

44

Tactic: destruct (1)

Lemma pq_p: ∀ (P Q: Prop), P ∧ Q → P.
Proof.

intros P Q H.
destruct H as [p q].
apply p.

Qed.

I By destruct, a hypothesis is case-analyzed
I In this example, there is only one case, conj

I Correspondence to proof terms:
Introduces match . . . with conj p q ⇒ . . .

44

Tactic: destruct (1)

Lemma pq_p: ∀ (P Q: Prop), P ∧ Q → P.
Proof.

intros P Q H.
destruct H as [p q].
apply p.

Qed.

I By destruct, a hypothesis is case-analyzed
I In this example, there is only one case, conj
I Correspondence to proof terms:

Introduces match . . . with conj p q ⇒ . . .

44

Tactics: destruct (2), left, right
Lemma pq_or_qp:
∀ (P Q: Prop), P ∨ Q → Q ∨ P.

Proof.
intros P Q H.
destruct H as [p | q].
− right. apply p.
− left. apply q.

Qed.

I By destruct, a hypothesis is case-analyzed

I For each case, there is a subgoal
I Correspondence to proof terms:

Introduces match . . . with | . . . | . . . ⇒ . . .

I By left (right), the first (second) constructor is selected
I Correspondence to proof terms:

Introduces or_introl resp. or_intror

45

Tactics: destruct (2), left, right
Lemma pq_or_qp:
∀ (P Q: Prop), P ∨ Q → Q ∨ P.

Proof.
intros P Q H.
destruct H as [p | q].
− right. apply p.
− left. apply q.

Qed.

I By destruct, a hypothesis is case-analyzed
I For each case, there is a subgoal

I Correspondence to proof terms:
Introduces match . . . with | . . . | . . . ⇒ . . .

I By left (right), the first (second) constructor is selected
I Correspondence to proof terms:

Introduces or_introl resp. or_intror

45

Tactics: destruct (2), left, right
Lemma pq_or_qp:
∀ (P Q: Prop), P ∨ Q → Q ∨ P.

Proof.
intros P Q H.
destruct H as [p | q].
− right. apply p.
− left. apply q.

Qed.

I By destruct, a hypothesis is case-analyzed
I For each case, there is a subgoal
I Correspondence to proof terms:

Introduces match . . . with | . . . | . . . ⇒ . . .

I By left (right), the first (second) constructor is selected
I Correspondence to proof terms:

Introduces or_introl resp. or_intror
45

Tactic: split

Lemma and_comm:
∀ (P Q: Prop), P ∧ Q → Q ∧ P.

Proof.
intros P Q H.
destruct H as [p q].
split.
− apply q.
− apply p.

Qed.

I By split, a goal is split into subgoals

I For each case, there is a subgoal
I Correspondence to proof terms:

Introduces conj

46

Tactic: split

Lemma and_comm:
∀ (P Q: Prop), P ∧ Q → Q ∧ P.

Proof.
intros P Q H.
destruct H as [p q].
split.
− apply q.
− apply p.

Qed.

I By split, a goal is split into subgoals
I For each case, there is a subgoal

I Correspondence to proof terms:
Introduces conj

46

Tactic: split

Lemma and_comm:
∀ (P Q: Prop), P ∧ Q → Q ∧ P.

Proof.
intros P Q H.
destruct H as [p q].
split.
− apply q.
− apply p.

Qed.

I By split, a goal is split into subgoals
I For each case, there is a subgoal
I Correspondence to proof terms:

Introduces conj

46

Tactic: exfalso
Lemma false_proves_anything:
∀ (P: Prop), ⊥ → P.

Proof.
intros P f.
exfalso.
exact f.

Qed.

I exfalso replaces the current goal by ⊥

I In other words, proving ⊥ suffices to prove any P
I The correspondence to proof terms is very interesting. Recall

that ⊥ is an empty type. What happens if we assume a proof
of ⊥ (as in the example)? As with every value, we can
case-analyze it and prove P for every case. But there are no
cases, so we are done!

I Crucial part of the corresponding proof term:
match f with (nothing here) end

47

Tactic: exfalso
Lemma false_proves_anything:
∀ (P: Prop), ⊥ → P.

Proof.
intros P f.
exfalso.
exact f.

Qed.

I exfalso replaces the current goal by ⊥
I In other words, proving ⊥ suffices to prove any P

I The correspondence to proof terms is very interesting. Recall
that ⊥ is an empty type. What happens if we assume a proof
of ⊥ (as in the example)? As with every value, we can
case-analyze it and prove P for every case. But there are no
cases, so we are done!

I Crucial part of the corresponding proof term:
match f with (nothing here) end

47

Tactic: exfalso
Lemma false_proves_anything:
∀ (P: Prop), ⊥ → P.

Proof.
intros P f.
exfalso.
exact f.

Qed.

I exfalso replaces the current goal by ⊥
I In other words, proving ⊥ suffices to prove any P
I The correspondence to proof terms is very interesting. Recall

that ⊥ is an empty type. What happens if we assume a proof
of ⊥ (as in the example)? As with every value, we can
case-analyze it and prove P for every case. But there are no
cases, so we are done!

I Crucial part of the corresponding proof term:
match f with (nothing here) end

47

Tactic: exfalso
Lemma false_proves_anything:
∀ (P: Prop), ⊥ → P.

Proof.
intros P f.
exfalso.
exact f.

Qed.

I exfalso replaces the current goal by ⊥
I In other words, proving ⊥ suffices to prove any P
I The correspondence to proof terms is very interesting. Recall

that ⊥ is an empty type. What happens if we assume a proof
of ⊥ (as in the example)? As with every value, we can
case-analyze it and prove P for every case. But there are no
cases, so we are done!

I Crucial part of the corresponding proof term:
match f with (nothing here) end

47

Tactics: simpl, reflexivity

Lemma negb_tf: negb true = false.
Proof.

simpl.
reflexivity.

Qed.

I By simpl, a goal is maximally reduced

I This yields the subgoal false = false

I By reflexivity, we can prove such a goal
I How is = encoded as a type and what proof term does

reflexivity introduce?
I The answer is “as an inductive type” but the details are not

relevant at this point

48

Tactics: simpl, reflexivity

Lemma negb_tf: negb true = false.
Proof.

simpl.
reflexivity.

Qed.

I By simpl, a goal is maximally reduced
I This yields the subgoal false = false

I By reflexivity, we can prove such a goal
I How is = encoded as a type and what proof term does

reflexivity introduce?
I The answer is “as an inductive type” but the details are not

relevant at this point

48

Tactics: simpl, reflexivity

Lemma negb_tf: negb true = false.
Proof.

simpl.
reflexivity.

Qed.

I By simpl, a goal is maximally reduced
I This yields the subgoal false = false

I By reflexivity, we can prove such a goal

I How is = encoded as a type and what proof term does
reflexivity introduce?

I The answer is “as an inductive type” but the details are not
relevant at this point

48

Tactics: simpl, reflexivity

Lemma negb_tf: negb true = false.
Proof.

simpl.
reflexivity.

Qed.

I By simpl, a goal is maximally reduced
I This yields the subgoal false = false

I By reflexivity, we can prove such a goal
I How is = encoded as a type and what proof term does

reflexivity introduce?

I The answer is “as an inductive type” but the details are not
relevant at this point

48

Tactics: simpl, reflexivity

Lemma negb_tf: negb true = false.
Proof.

simpl.
reflexivity.

Qed.

I By simpl, a goal is maximally reduced
I This yields the subgoal false = false

I By reflexivity, we can prove such a goal
I How is = encoded as a type and what proof term does

reflexivity introduce?
I The answer is “as an inductive type” but the details are not

relevant at this point

48

Negation
I We now come to our fourth logical connective, negation

I You have seen it, as it is already built-in: The negation of a
proposition P is the implication P → ⊥

I We use the notation ∼P for P → ⊥
I Example: Prove that for all propositions P, we have

P → ∼(∼P).

Lemma not_not:
∀ (P: Prop), P → ∼(∼P).

Proof.
intros P p.
intros H.
apply H.
exact p.

Qed.

49

Negation
I We now come to our fourth logical connective, negation
I You have seen it, as it is already built-in: The negation of a

proposition P is the implication P → ⊥

I We use the notation ∼P for P → ⊥
I Example: Prove that for all propositions P, we have

P → ∼(∼P).

Lemma not_not:
∀ (P: Prop), P → ∼(∼P).

Proof.
intros P p.
intros H.
apply H.
exact p.

Qed.

49

Negation
I We now come to our fourth logical connective, negation
I You have seen it, as it is already built-in: The negation of a

proposition P is the implication P → ⊥
I We use the notation ∼P for P → ⊥

I Example: Prove that for all propositions P, we have
P → ∼(∼P).

Lemma not_not:
∀ (P: Prop), P → ∼(∼P).

Proof.
intros P p.
intros H.
apply H.
exact p.

Qed.

49

Negation
I We now come to our fourth logical connective, negation
I You have seen it, as it is already built-in: The negation of a

proposition P is the implication P → ⊥
I We use the notation ∼P for P → ⊥
I Example: Prove that for all propositions P, we have

P → ∼(∼P).

Lemma not_not:
∀ (P: Prop), P → ∼(∼P).

Proof.
intros P p.
intros H.
apply H.
exact p.

Qed.

49

Types that Depend on Terms

I Recall polymorphic types, i.e. types that depend on types

3) Polymorphic Types
I ∀ (X: Type), list X : Type

I with value nil
I ∀ (P: Prop), >∨ P : Prop

I with proof fun (_: Prop) ⇒ or_introl I

I Types can also depend on terms

4) Dependent Types
I ∀ (b: bool), negb (negb b) = b : Prop
I ∀ (n: nat), 0 + n = n : Prop
I ∀ (n: nat), n + 0 = n : Prop
I ∀ (m n: nat), m + n = n + m : Prop

I Roadmap: We prove all of the above properties!

50

Types that Depend on Terms

I Recall polymorphic types, i.e. types that depend on types

3) Polymorphic Types
I ∀ (X: Type), list X : Type

I with value nil
I ∀ (P: Prop), >∨ P : Prop

I with proof fun (_: Prop) ⇒ or_introl I

I Types can also depend on terms

4) Dependent Types
I ∀ (b: bool), negb (negb b) = b : Prop
I ∀ (n: nat), 0 + n = n : Prop
I ∀ (n: nat), n + 0 = n : Prop
I ∀ (m n: nat), m + n = n + m : Prop

I Roadmap: We prove all of the above properties!

50

Types that Depend on Terms

I Recall polymorphic types, i.e. types that depend on types

3) Polymorphic Types
I ∀ (X: Type), list X : Type

I with value nil
I ∀ (P: Prop), >∨ P : Prop

I with proof fun (_: Prop) ⇒ or_introl I

I Types can also depend on terms

4) Dependent Types
I ∀ (b: bool), negb (negb b) = b : Prop
I ∀ (n: nat), 0 + n = n : Prop
I ∀ (n: nat), n + 0 = n : Prop
I ∀ (m n: nat), m + n = n + m : Prop

I Roadmap: We prove all of the above properties!

50

Type Universes
I The type of a type is called a type universe: Either Type or

Prop3

bool : Type > : Prop
nat : Type 10 = 4 : Prop

∀ (P: Prop), > ∨ P : Prop

I A type of Type (e.g. nat) contains data values

O : nat true : bool
S O : nat false : bool
plus : nat → nat → nat

I A type of Prop (e.g. >) contains proofs

I : >
(fun (_: Type) ⇒ or_introl I)

: ∀ (P: Prop), > ∨ P

3This is a simplified view that is sufficient for now.
51

Type Universes
I The type of a type is called a type universe: Either Type or

Prop3

bool : Type > : Prop
nat : Type 10 = 4 : Prop

∀ (P: Prop), > ∨ P : Prop

I A type of Type (e.g. nat) contains data values

O : nat true : bool
S O : nat false : bool
plus : nat → nat → nat

I A type of Prop (e.g. >) contains proofs

I : >
(fun (_: Type) ⇒ or_introl I)

: ∀ (P: Prop), > ∨ P

3This is a simplified view that is sufficient for now.
51

Type Universes
I The type of a type is called a type universe: Either Type or

Prop3

bool : Type > : Prop
nat : Type 10 = 4 : Prop

∀ (P: Prop), > ∨ P : Prop

I A type of Type (e.g. nat) contains data values

O : nat true : bool
S O : nat false : bool
plus : nat → nat → nat

I A type of Prop (e.g. >) contains proofs

I : >
(fun (_: Type) ⇒ or_introl I)

: ∀ (P: Prop), > ∨ P

3This is a simplified view that is sufficient for now.
51

Back to Booleans, 1

Definition negb (x: bool) : bool :=
match x with
| true ⇒ false
| false ⇒ true
end.

I Let’s prove negb (negb b) = b for all b

I The term negb (neg b) does not reduce
I Why not? negb performs pattern matching, but since we

don’t know anything about b (it could be any bool), we don’t
know which case will match

I But there are only two possible values for b. So let’s do a
case analysis and prove every case!
1. b is true. Then negb (negb true) reduces to true.
2. b is false. Then negb (negb false) reduces to false.

52

Back to Booleans, 1

Definition negb (x: bool) : bool :=
match x with
| true ⇒ false
| false ⇒ true
end.

I Let’s prove negb (negb b) = b for all b
I The term negb (neg b) does not reduce

I Why not? negb performs pattern matching, but since we
don’t know anything about b (it could be any bool), we don’t
know which case will match

I But there are only two possible values for b. So let’s do a
case analysis and prove every case!
1. b is true. Then negb (negb true) reduces to true.
2. b is false. Then negb (negb false) reduces to false.

52

Back to Booleans, 1

Definition negb (x: bool) : bool :=
match x with
| true ⇒ false
| false ⇒ true
end.

I Let’s prove negb (negb b) = b for all b
I The term negb (neg b) does not reduce
I Why not? negb performs pattern matching, but since we

don’t know anything about b (it could be any bool), we don’t
know which case will match

I But there are only two possible values for b. So let’s do a
case analysis and prove every case!
1. b is true. Then negb (negb true) reduces to true.
2. b is false. Then negb (negb false) reduces to false.

52

Back to Booleans, 1

Definition negb (x: bool) : bool :=
match x with
| true ⇒ false
| false ⇒ true
end.

I Let’s prove negb (negb b) = b for all b
I The term negb (neg b) does not reduce
I Why not? negb performs pattern matching, but since we

don’t know anything about b (it could be any bool), we don’t
know which case will match

I But there are only two possible values for b. So let’s do a
case analysis and prove every case!
1. b is true. Then negb (negb true) reduces to true.
2. b is false. Then negb (negb false) reduces to false.

52

Back to Booleans, 2
Definition negb (x: bool) : bool :=
match x with
| true ⇒ false
| false ⇒ true
end.

I We have all the tools to prove this in Coq

Lemma negb_inverse:
∀ (b: bool), negb (negb b) = b.

Proof.
intros b.
destruct b.
− simpl. reflexivity.
− simpl. reflexivity.

Qed.

53

Back to Booleans, 2
Definition negb (x: bool) : bool :=
match x with
| true ⇒ false
| false ⇒ true
end.

I We have all the tools to prove this in Coq

Lemma negb_inverse:
∀ (b: bool), negb (negb b) = b.

Proof.
intros b.
destruct b.
− simpl. reflexivity.
− simpl. reflexivity.

Qed.

53

Back to Natural Numbers

Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I We can easily prove that 0 + n = n for all n

I Because: 0 + n reduces to n by definition of plus

Lemma O_plus_n: ∀ (n: nat), 0+ n = n.
Proof.

intros n.
simpl.
reflexivity.

Qed.

54

Back to Natural Numbers

Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I We can easily prove that 0 + n = n for all n
I Because: 0 + n reduces to n by definition of plus

Lemma O_plus_n: ∀ (n: nat), 0+ n = n.
Proof.

intros n.
simpl.
reflexivity.

Qed.

54

Back to Natural Numbers

Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I We can easily prove that 0 + n = n for all n
I Because: 0 + n reduces to n by definition of plus

Lemma O_plus_n: ∀ (n: nat), 0+ n = n.
Proof.

intros n.
simpl.
reflexivity.

Qed.

54

Natural induction
Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I What about the other way round, m + 0 = m?

I This should hold, but we cannot reduce m + 0
I Why not? plus pattern-matches on the first argument, but

since we don’t know anything about m (it could be any
number), we don’t know which case will match

I “any number” rings a bell: Proof by Natural Induction!
I Base case. To show: 0 + 0 = 0. By definition.
I Inductive case. Let IH be m+ 0 = m. To show:

(S m) + 0 = S m. But this is by def. of plus convertible to
S(m+ 0) = S m. Now use IH, so we have to show
S m = S m which holds by reflexivity of =.

55

Natural induction
Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I What about the other way round, m + 0 = m?
I This should hold, but we cannot reduce m + 0

I Why not? plus pattern-matches on the first argument, but
since we don’t know anything about m (it could be any
number), we don’t know which case will match

I “any number” rings a bell: Proof by Natural Induction!
I Base case. To show: 0 + 0 = 0. By definition.
I Inductive case. Let IH be m+ 0 = m. To show:

(S m) + 0 = S m. But this is by def. of plus convertible to
S(m+ 0) = S m. Now use IH, so we have to show
S m = S m which holds by reflexivity of =.

55

Natural induction
Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I What about the other way round, m + 0 = m?
I This should hold, but we cannot reduce m + 0
I Why not? plus pattern-matches on the first argument, but

since we don’t know anything about m (it could be any
number), we don’t know which case will match

I “any number” rings a bell: Proof by Natural Induction!
I Base case. To show: 0 + 0 = 0. By definition.
I Inductive case. Let IH be m+ 0 = m. To show:

(S m) + 0 = S m. But this is by def. of plus convertible to
S(m+ 0) = S m. Now use IH, so we have to show
S m = S m which holds by reflexivity of =.

55

Natural induction
Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I What about the other way round, m + 0 = m?
I This should hold, but we cannot reduce m + 0
I Why not? plus pattern-matches on the first argument, but

since we don’t know anything about m (it could be any
number), we don’t know which case will match

I “any number” rings a bell: Proof by Natural Induction!

I Base case. To show: 0 + 0 = 0. By definition.
I Inductive case. Let IH be m+ 0 = m. To show:

(S m) + 0 = S m. But this is by def. of plus convertible to
S(m+ 0) = S m. Now use IH, so we have to show
S m = S m which holds by reflexivity of =.

55

Natural induction
Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I What about the other way round, m + 0 = m?
I This should hold, but we cannot reduce m + 0
I Why not? plus pattern-matches on the first argument, but

since we don’t know anything about m (it could be any
number), we don’t know which case will match

I “any number” rings a bell: Proof by Natural Induction!
I Base case. To show: 0 + 0 = 0. By definition.

I Inductive case. Let IH be m+ 0 = m. To show:
(S m) + 0 = S m. But this is by def. of plus convertible to
S(m+ 0) = S m. Now use IH, so we have to show
S m = S m which holds by reflexivity of =.

55

Natural induction
Fixpoint plus (m n: nat) : nat :=
match m with
| O ⇒ n
| S m' ⇒ S (plus m' n)
end.

I What about the other way round, m + 0 = m?
I This should hold, but we cannot reduce m + 0
I Why not? plus pattern-matches on the first argument, but

since we don’t know anything about m (it could be any
number), we don’t know which case will match

I “any number” rings a bell: Proof by Natural Induction!
I Base case. To show: 0 + 0 = 0. By definition.
I Inductive case. Let IH be m+ 0 = m. To show:

(S m) + 0 = S m. But this is by def. of plus convertible to
S(m+ 0) = S m. Now use IH, so we have to show
S m = S m which holds by reflexivity of =.

55

Natural induction in Coq, 1

I Let’s do the same proof, but in Coq

Lemma n_plus_O: ∀ (n: nat), n + 0 = n.
Proof.

intros n.
induction n.
− simpl. reflexivity.
− simpl. rewrite IHn. reflexivity.

Qed.

I induction n does a case-analysis on n (like destruct),
but provides an additional inductive hypothesis

I rewrite IHn uses the equation IHn to substitute a
subterm in the current goal

56

Natural induction in Coq, 1

I Let’s do the same proof, but in Coq

Lemma n_plus_O: ∀ (n: nat), n + 0 = n.
Proof.
intros n.
induction n.
− simpl. reflexivity.
− simpl. rewrite IHn. reflexivity.

Qed.

I induction n does a case-analysis on n (like destruct),
but provides an additional inductive hypothesis

I rewrite IHn uses the equation IHn to substitute a
subterm in the current goal

56

Natural induction in Coq, 1

I Let’s do the same proof, but in Coq

Lemma n_plus_O: ∀ (n: nat), n + 0 = n.
Proof.
intros n.
induction n.
− simpl. reflexivity.
− simpl. rewrite IHn. reflexivity.

Qed.

I induction n does a case-analysis on n (like destruct),
but provides an additional inductive hypothesis

I rewrite IHn uses the equation IHn to substitute a
subterm in the current goal

56

Natural induction in Coq, 2

I Remember the very first property we wanted to show?
m + n = n + m for all m, n

I Proof by induction over m.
I Base case. To show: 0 + n = n+ 0. By our last lemma, we

know n+ 0 = n; by definition of plus we know 0 + n = n;
thus we are done.

I Inductive case. Let IH be m+ n = n+m. To show:
(S m) + n = n+ (S m). This goal reduces to
S(m+ n) = n+ (S m). By the IH, we can reduce the goal to
S(n+m) = n+ (S m). Here we have the same problem as
with proving n+ 0 = n: It does not hold by definition, because
plus pattern-matches on the first argument. Thus we prove
this as an extra lemma, after which the proof is completed.

57

Natural induction in Coq, 2

I Remember the very first property we wanted to show?
m + n = n + m for all m, n

I Proof by induction over m.
I Base case. To show: 0 + n = n+ 0. By our last lemma, we

know n+ 0 = n; by definition of plus we know 0 + n = n;
thus we are done.

I Inductive case. Let IH be m+ n = n+m. To show:
(S m) + n = n+ (S m). This goal reduces to
S(m+ n) = n+ (S m). By the IH, we can reduce the goal to
S(n+m) = n+ (S m). Here we have the same problem as
with proving n+ 0 = n: It does not hold by definition, because
plus pattern-matches on the first argument. Thus we prove
this as an extra lemma, after which the proof is completed.

57

Natural induction in Coq, 3

I Let’s prove the little lemma
m + (S n) = S (m + n) for all m, n
... by induction on m

Lemma m_plus_S:
∀ (m n: nat), m+ (S n) = S (m+ n).

Proof.
intros m n.
induction m.
− simpl. reflexivity.
− simpl. rewrite IHm. reflexivity.

Qed.

58

Natural induction in Coq, 3

I Let’s prove the little lemma
m + (S n) = S (m + n) for all m, n
... by induction on m

Lemma m_plus_S:
∀ (m n: nat), m+ (S n) = S (m+ n).

Proof.
intros m n.
induction m.
− simpl. reflexivity.
− simpl. rewrite IHm. reflexivity.

Qed.

58

Natural induction in Coq, 4

I Now we can prove commutativity of addition in Coq, following
the proof sketch given before

Lemma plus_comm:
∀ (m n: nat), m+ n = n+ m.

Proof.
intros m.
induction m.
− intros. rewrite m_plus_O.

simpl. reflexivity.
− intros n. simpl. rewrite IHm.

rewrite m_plus_S. reflexivity.
Qed.

59

Natural induction in Coq, 4

I Now we can prove commutativity of addition in Coq, following
the proof sketch given before

Lemma plus_comm:
∀ (m n: nat), m+ n = n+ m.

Proof.
intros m.
induction m.
− intros. rewrite m_plus_O.

simpl. reflexivity.
− intros n. simpl. rewrite IHm.

rewrite m_plus_S. reflexivity.
Qed.

59

Induction in Coq: Outlook, 1

I We know the principle of natural induction from maths

I Why have we considered this principle a sound proof method?
I Because our objects (here: natural numbers) are constructed

out of finitely many steps4. We can view a proof of induction
as a recipe on how to obtain a proof for any concrete
number n.

I Example: How do we prove 3 + 0 = 3?
I Use Inductive Case, but need to prove 2 + 0 = 2. How?
I Use Inductive Case, but need to prove 1 + 0 = 1. How?
I Use Inductive Case, but need to prove 0 + 0 = 0. How?
I Use Base Case.

I Doesn’t this proof construction look a lot like... a recursive
program?

4For further reading: “x is-a-substructure-of y” is well-founded
60

Induction in Coq: Outlook, 1

I We know the principle of natural induction from maths
I Why have we considered this principle a sound proof method?

I Because our objects (here: natural numbers) are constructed
out of finitely many steps4. We can view a proof of induction
as a recipe on how to obtain a proof for any concrete
number n.

I Example: How do we prove 3 + 0 = 3?
I Use Inductive Case, but need to prove 2 + 0 = 2. How?
I Use Inductive Case, but need to prove 1 + 0 = 1. How?
I Use Inductive Case, but need to prove 0 + 0 = 0. How?
I Use Base Case.

I Doesn’t this proof construction look a lot like... a recursive
program?

4For further reading: “x is-a-substructure-of y” is well-founded
60

Induction in Coq: Outlook, 1

I We know the principle of natural induction from maths
I Why have we considered this principle a sound proof method?
I Because our objects (here: natural numbers) are constructed

out of finitely many steps4. We can view a proof of induction
as a recipe on how to obtain a proof for any concrete
number n.

I Example: How do we prove 3 + 0 = 3?
I Use Inductive Case, but need to prove 2 + 0 = 2. How?
I Use Inductive Case, but need to prove 1 + 0 = 1. How?
I Use Inductive Case, but need to prove 0 + 0 = 0. How?
I Use Base Case.

I Doesn’t this proof construction look a lot like... a recursive
program?

4For further reading: “x is-a-substructure-of y” is well-founded
60

Induction in Coq: Outlook, 1

I We know the principle of natural induction from maths
I Why have we considered this principle a sound proof method?
I Because our objects (here: natural numbers) are constructed

out of finitely many steps4. We can view a proof of induction
as a recipe on how to obtain a proof for any concrete
number n.

I Example: How do we prove 3 + 0 = 3?
I Use Inductive Case, but need to prove 2 + 0 = 2. How?
I Use Inductive Case, but need to prove 1 + 0 = 1. How?
I Use Inductive Case, but need to prove 0 + 0 = 0. How?
I Use Base Case.

I Doesn’t this proof construction look a lot like... a recursive
program?

4For further reading: “x is-a-substructure-of y” is well-founded
60

Induction in Coq: Outlook, 1

I We know the principle of natural induction from maths
I Why have we considered this principle a sound proof method?
I Because our objects (here: natural numbers) are constructed

out of finitely many steps4. We can view a proof of induction
as a recipe on how to obtain a proof for any concrete
number n.

I Example: How do we prove 3 + 0 = 3?
I Use Inductive Case, but need to prove 2 + 0 = 2. How?
I Use Inductive Case, but need to prove 1 + 0 = 1. How?
I Use Inductive Case, but need to prove 0 + 0 = 0. How?
I Use Base Case.

I Doesn’t this proof construction look a lot like... a recursive
program?

4For further reading: “x is-a-substructure-of y” is well-founded
60

Induction in Coq: Outlook, 2

I Example: How do we prove 3 + 0 = 3?
I Use Inductive Case, but need to prove 2 + 0 = 2. How?
I Use Inductive Case, but need to prove 1 + 0 = 1. How?
I Use Inductive Case, but need to prove 0 + 0 = 0. How?
I Use Base Case.

I In Coq, an inductive proof is a recursive function
I Every Inductive type has this essential property that each

object is constructed out of finitely many steps
I There is an induction principle for every type, and it is

automatically generated5

5You can take a look e.g. via Print nat_ind.
61

Induction in Coq: Outlook, 2

I Example: How do we prove 3 + 0 = 3?
I Use Inductive Case, but need to prove 2 + 0 = 2. How?
I Use Inductive Case, but need to prove 1 + 0 = 1. How?
I Use Inductive Case, but need to prove 0 + 0 = 0. How?
I Use Base Case.

I In Coq, an inductive proof is a recursive function

I Every Inductive type has this essential property that each
object is constructed out of finitely many steps

I There is an induction principle for every type, and it is
automatically generated5

5You can take a look e.g. via Print nat_ind.
61

Induction in Coq: Outlook, 2

I Example: How do we prove 3 + 0 = 3?
I Use Inductive Case, but need to prove 2 + 0 = 2. How?
I Use Inductive Case, but need to prove 1 + 0 = 1. How?
I Use Inductive Case, but need to prove 0 + 0 = 0. How?
I Use Base Case.

I In Coq, an inductive proof is a recursive function
I Every Inductive type has this essential property that each

object is constructed out of finitely many steps

I There is an induction principle for every type, and it is
automatically generated5

5You can take a look e.g. via Print nat_ind.
61

Induction in Coq: Outlook, 2

I Example: How do we prove 3 + 0 = 3?
I Use Inductive Case, but need to prove 2 + 0 = 2. How?
I Use Inductive Case, but need to prove 1 + 0 = 1. How?
I Use Inductive Case, but need to prove 0 + 0 = 0. How?
I Use Base Case.

I In Coq, an inductive proof is a recursive function
I Every Inductive type has this essential property that each

object is constructed out of finitely many steps
I There is an induction principle for every type, and it is

automatically generated5

5You can take a look e.g. via Print nat_ind.
61

Summary

I Coq is a programming language (with restricted recursion)

I Data is defined inductively, i.e. all values are finite objects
I Functions are defined recursively over this inductive structure
I The Curry-Howard-Correspondence provides clever tricks to

encode propositions as types
I A proposition is proven by a well-typed proof term
I A proof by induction is a recipe for constructing proofs for

any element
I This recipe is a recursive function!

I Tactics assist the user in finding a proof term

62

Summary

I Coq is a programming language (with restricted recursion)
I Data is defined inductively, i.e. all values are finite objects

I Functions are defined recursively over this inductive structure
I The Curry-Howard-Correspondence provides clever tricks to

encode propositions as types
I A proposition is proven by a well-typed proof term
I A proof by induction is a recipe for constructing proofs for

any element
I This recipe is a recursive function!

I Tactics assist the user in finding a proof term

62

Summary

I Coq is a programming language (with restricted recursion)
I Data is defined inductively, i.e. all values are finite objects
I Functions are defined recursively over this inductive structure

I The Curry-Howard-Correspondence provides clever tricks to
encode propositions as types

I A proposition is proven by a well-typed proof term
I A proof by induction is a recipe for constructing proofs for

any element
I This recipe is a recursive function!

I Tactics assist the user in finding a proof term

62

Summary

I Coq is a programming language (with restricted recursion)
I Data is defined inductively, i.e. all values are finite objects
I Functions are defined recursively over this inductive structure
I The Curry-Howard-Correspondence provides clever tricks to

encode propositions as types

I A proposition is proven by a well-typed proof term
I A proof by induction is a recipe for constructing proofs for

any element
I This recipe is a recursive function!

I Tactics assist the user in finding a proof term

62

Summary

I Coq is a programming language (with restricted recursion)
I Data is defined inductively, i.e. all values are finite objects
I Functions are defined recursively over this inductive structure
I The Curry-Howard-Correspondence provides clever tricks to

encode propositions as types
I A proposition is proven by a well-typed proof term

I A proof by induction is a recipe for constructing proofs for
any element
I This recipe is a recursive function!

I Tactics assist the user in finding a proof term

62

Summary

I Coq is a programming language (with restricted recursion)
I Data is defined inductively, i.e. all values are finite objects
I Functions are defined recursively over this inductive structure
I The Curry-Howard-Correspondence provides clever tricks to

encode propositions as types
I A proposition is proven by a well-typed proof term
I A proof by induction is a recipe for constructing proofs for

any element
I This recipe is a recursive function!

I Tactics assist the user in finding a proof term

62

Summary

I Coq is a programming language (with restricted recursion)
I Data is defined inductively, i.e. all values are finite objects
I Functions are defined recursively over this inductive structure
I The Curry-Howard-Correspondence provides clever tricks to

encode propositions as types
I A proposition is proven by a well-typed proof term
I A proof by induction is a recipe for constructing proofs for

any element
I This recipe is a recursive function!

I Tactics assist the user in finding a proof term

62

Literature

[1] B. Pierce et al., Software Foundations
https://softwarefoundations.cis.upenn.edu/
(Free online book series)

[1] G. Smolka, Lecture Notes of Introduction to Computational
Logic
https://www.ps.uni-saarland.de/courses.html

63

https://softwarefoundations.cis.upenn.edu/
https://www.ps.uni-saarland.de/courses.html

	Introduction
	Coq Programming
	Propositions as Types

