Interactive Theorem Proving: An Intro to the Coq Proof Assistant

Presented by Lukas Convent and Prof. Dr. Martin Leucker as part of the dependable software course as taught at ISP in Lübeck in 2019.

Learning Goals

- Programming: Inductive Data Types and Recursive Functions
- Specifying: Encode Logical Formulas as Types
- Proving: Prove Logical Formulas about Programs

Outline

1. Introduction
2. Coq Programming
3. Propositions as Types

Introduction

Functional and Imperative Programs

Definition (Imperative Program)

An imperative program p describes a partial function on memory states: Given some initial state σ, the execution of p on σ either terminates with a final state σ^{\prime} or it diverges. For example, the program x $:=2 \star$ x maps state $\sigma=\left\{x \mapsto 1, _\mapsto 0\right\}$ to state $\sigma^{\prime}=\left\{x \mapsto 2, _\mapsto 0\right\}$

Definition (Functional Program)

A functional program f describes a partial function on values: Given some input value v, the reduction of the expression $f(v)$ either terminates in a value v^{\prime} or it diverges. For example, the program $f(x):=2 * x$ with 1 given as a value, resulting in the expression $f(1)$, reduces to value 2

Program Verification

- We focus on verifying functional programs
- We do not limit ourselves though:
- Imperative programs can be expressed as functional programs
- The typical framework to prove properties about imperative programs is the Hoare calculus, which can be easily expressed in out framework
- Our framework is a functional language that allows to:
- Write useful programs
- Write specifications for these programs
- Prove these specifications
- Next: Recap on what it means to prove a logical statement (such as a specification)

Start simple: Propositional Logic

- Syntax
- Formulas $\varphi, \psi:=p \in A P|\perp| \varphi \rightarrow \psi$
- Atomic propositions $A P$
- (further connectives $\neg, \wedge, \vee, \ldots$ can be used as notation)

Start simple: Propositional Logic

- Syntax
- Formulas $\varphi, \psi:=p \in A P|\perp| \varphi \rightarrow \psi$
- Atomic propositions $A P$
- (further connectives $\neg, \wedge, \vee, \ldots$ can be used as notation)
- Semantics
- Truth domain $T:=\{0,1\}$
- Interpretations $v \in A P \rightarrow T$
- Evaluation function

$$
\begin{aligned}
\llbracket p \rrbracket_{v} & :=v(p) \\
\llbracket \perp \rrbracket_{v} & :=0 \\
\llbracket \varphi \rightarrow \psi \rrbracket_{v} & := \begin{cases}1 & \text { if } \llbracket \varphi \rrbracket_{v}=0 \text { or } \llbracket \psi \rrbracket_{v}=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- Satisfaction $\quad v \vDash \varphi \quad: \Leftrightarrow \quad \llbracket \varphi \rrbracket_{v}=1$

Validity $\quad \vDash \varphi \quad: \Leftrightarrow \quad v \vDash \varphi$ for all v

- φ is called a tautology if $\vDash \varphi$

Why proving?

- Goal: Given φ, does $\vDash \varphi$ hold?
- First approach: Evaluate and check $\llbracket \varphi \rrbracket_{v}=1$ for all v

Why proving?

- Goal: Given φ, does $\vDash \varphi$ hold?
- First approach: Evaluate and check $\llbracket \varphi \rrbracket v=1$ for all v
- Problem:
- for Propositional Logic: Possible, but there are 2^{n} interpretations (where n is the number of vars in φ)
- for First-Order Logic: Impossible, there may be infinitely many interpretations

Why proving?

- Goal: Given φ, does $\vDash \varphi$ hold?
- First approach: Evaluate and check $\llbracket \varphi \rrbracket_{v}=1$ for all v
- Problem:
- for Propositional Logic: Possible, but there are 2^{n} interpretations (where n is the number of vars in φ)
- for First-Order Logic: Impossible, there may be infinitely many interpretations
- Help:
- Use a proof system
- Idea: Construct a finite proof that φ holds
- Proof system must be sound:

If φ can be proven $(\vdash \varphi)$, then φ is valid

- Proof system may be complete:

If φ is valid $\quad(\vDash \varphi)$, then φ can be proven $(\vdash \varphi)$

Proof System for Propositional Logic

- Natural deduction via entailment relation $\Gamma \vdash \varphi$
- Γ is a finite set of formulas $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$
- "from Γ, one can deduce φ "

Proof System for Propositional Logic

- Natural deduction via entailment relation $\Gamma \vdash \varphi$
- Γ is a finite set of formulas $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$
- "from Γ, one can deduce φ "
- Defined by inference rules:

$$
\begin{array}{ll}
\varphi \in \Gamma \frac{\Gamma,(\varphi \rightarrow \perp) \vdash \perp}{\Gamma \vdash \varphi} \text { Assump } & \frac{\Gamma,(\varphi \vdash}{\Gamma \vdash \varphi} \text { DoubleNEG } \\
\frac{\Gamma, \psi \vdash \varphi}{\Gamma \vdash \psi \rightarrow \varphi} \text { ImPINTRO } & \frac{\Gamma \vdash \psi \rightarrow \varphi}{\Gamma \vdash \varphi} \quad \Gamma \vdash \psi \\
\text { IMPELIM }
\end{array}
$$

Proof System for Propositional Logic

- Natural deduction via entailment relation $\Gamma \vdash \varphi$
- Γ is a finite set of formulas $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$
- "from Γ, one can deduce φ "
- Defined by inference rules:

$$
\begin{array}{ll}
\varphi \in \Gamma \frac{\Gamma,(\varphi \rightarrow \perp) \vdash \perp}{\Gamma \vdash \varphi} \text { Assump } & \frac{\Gamma \text { DoubleNEG }}{\Gamma \vdash \varphi} \\
\frac{\Gamma, \psi \vdash \varphi}{\Gamma \vdash \psi \rightarrow \varphi} \text { ImPIntro } & \frac{\Gamma \vdash \psi \rightarrow \varphi}{\Gamma \vdash \varphi} \quad \Gamma \vdash \psi \\
\text { ImPELim }
\end{array}
$$

- This system is sound:

If φ can be proven $(\vdash \varphi)$, then φ is valid $(\vDash \varphi)$

- This system is complete:

If φ is valid $(\vDash \varphi)$, then φ can be proven $(\vdash \varphi)$

Proof Trees

- In order to check validity of $\varphi:=p \rightarrow(q \rightarrow p) \ldots$

Proof Trees

- In order to check validity of $\varphi:=p \rightarrow(q \rightarrow p) \ldots$
- ...prove $\vdash \varphi$, as witnessed by the following proof tree

$$
\begin{aligned}
& \frac{p \in\{p, q\} \overline{p, q \vdash p} \text { Assump }}{\frac{p \vdash q \rightarrow p}{\vdash p \rightarrow(q \rightarrow p)} \text { ImpIntro }} \text { ImPIntro }
\end{aligned}
$$

Proof Trees

- In order to check validity of $\varphi:=p \rightarrow(q \rightarrow p) \ldots$
- ...prove $\vdash \varphi$, as witnessed by the following proof tree

$$
\begin{aligned}
& \frac{p \in\{p, q\} \overline{p, q \vdash p} \text { Assump }}{\frac{p \vdash q \rightarrow p}{\vdash p \rightarrow(q \rightarrow p)} \text { ImPIntRo }} \text { IMPINTRO }
\end{aligned}
$$

- By soundness of \vdash, φ is valid

Proof Trees in Type Systems, 1

- In a typed programming language, we want to check that term t is of type T

Proof Trees in Type Systems, 1

- In a typed programming language, we want to check that term t is of type T
- Terms

1. $3+2$
2. if true then true else false
3. λn.n
4. λn. $(\lambda b$. if b then n else $n+n)$
5. λn. let $s q=n * n$ in $s q * s q$

Proof Trees in Type Systems, 1

- In a typed programming language, we want to check that term t is of type T
- Terms

1. $3+2$
2. if true then true else false
3. λn.n
4. λn. $(\lambda b$. if b then n else $n+n)$
5. λn. let $s q=n * n$ in $s q * s q$

- Types

1. Int
2. Bool
3. Int \rightarrow Int
4. Int \rightarrow (Bool \rightarrow Int $)$
5. Int \rightarrow Int

Proof Trees in Type Systems, 1

- In a typed programming language, we want to check that term t is of type T
- Terms

1. $3+2$
2. if true then true else false
3. λn.n
4. λn. $(\lambda b$. if b then n else $n+n)$
5. λn. let $s q=n * n$ in $s q * s q$

- Types

1. Int
2. Bool
3. Int \rightarrow Int
4. Int \rightarrow (Bool \rightarrow Int $)$
5. Int \rightarrow Int

- We write $\vdash t: T$ if term t has type T

Proof Trees in Type Systems, 1

- In a typed programming language, we want to check that term t is of type T
- Terms

1. $3+2$
2. if true then true else false
3. λn.n
4. λn. $(\lambda b$. if b then n else $n+n)$
5. λn. let $s q=n * n$ in $s q * s q$

- Types

1. Int
2. Bool
3. Int \rightarrow Int
4. Int \rightarrow (Bool \rightarrow Int $)$
5. Int \rightarrow Int

- We write $\vdash t: T$ if term t has type T
- We can also talk of "soundness" here: A type system is sound if $\vdash t: T$ implies that t won't "crash" on execution. E.g., true +4 crashes

Proof Trees in Type Systems, 2

- To check whether $t:=\lambda x$. $(\lambda y \cdot x)$ is of type $T:=$ Int $\rightarrow($ Bool \rightarrow Int $)$, we check whether there is a proof tree for $\vdash t: T$

Proof Trees in Type Systems, 2

- To check whether $t:=\lambda x$. ($\lambda y . x)$ is of type $T:=$ Int $\rightarrow($ Bool \rightarrow Int $)$, we check whether there is a proof tree for $\vdash t: T$
- For our example, there is:

$$
\frac{\frac{(x: \text { Int }) \in\{x: \text { Int, } y: \text { Bool }\} \frac{}{x: \text { Int, } y: \text { Bool } \vdash x: \text { Int }} \text { Env }}{x: \text { Int } \vdash \lambda y \cdot x: \text { Bool } \rightarrow \text { Int }} \text { ABS }}{\vdash \lambda x \cdot(\lambda y \cdot x): \text { Int } \rightarrow(\text { Bool } \rightarrow \text { Int })} \text { ABS }
$$

Proof Trees in Type Systems, 2

- To check whether $t:=\lambda x$. ($\lambda y . x)$ is of type $T:=$ Int $\rightarrow($ Bool \rightarrow Int $)$, we check whether there is a proof tree for $\vdash t: T$
- For our example, there is:

$$
\frac{(x: \text { Int }) \in\{x: \text { Int }, y: \text { Bool }\} \frac{}{x: \text { Int, } y: \text { Bool } \vdash x: \text { Int }} \text { ENV }}{x: \text { Int } \vdash \lambda y \cdot x: \text { Bool } \rightarrow \text { Int }} \text { ABS } \mathrm{ABS}
$$

- In a type system, the inference rules are designed s.t. for every pair $\vdash t: T$, there exists at most one proof tree

Proof Trees in Type Systems, 2

- To check whether $t:=\lambda x$. ($\lambda y . x)$ is of type $T:=$ Int $\rightarrow($ Bool \rightarrow Int $)$, we check whether there is a proof tree for $\vdash t: T$
- For our example, there is:

$$
\frac{\frac{(x: \text { Int }) \in\{x: \text { Int, } y: \text { Bool }\} \frac{}{x: \text { Int, } y: \text { Bool } \vdash x: \text { Int }} \text { ENV }}{x: \text { Int } \vdash \lambda y \cdot x: \text { Bool } \rightarrow \text { Int }} \text { ABS }}{\vdash \lambda x \cdot(\lambda y \cdot x): \text { Int } \rightarrow(\text { Bool } \rightarrow \text { Int })} \text { ABS }
$$

- In a type system, the inference rules are designed s.t. for every pair $\vdash t: T$, there exists at most one proof tree
- t itself witnesses its own proof tree of $\vdash t: T$

Proof Trees in Type Systems, 2

- To check whether $t:=\lambda x .(\lambda y \cdot x)$ is of type $T:=$ Int $\rightarrow($ Bool \rightarrow Int $)$, we check whether there is a proof tree for $\vdash t: T$
- For our example, there is:

$$
\begin{equation*}
\frac{\frac{(x: \text { Int }) \in\{x: \text { Int, } y: \text { Bool }\} \frac{}{x: \text { Int, } y: \text { Bool } \vdash x: \text { Int }} \text { ENV }}{x: \text { Int } \vdash \lambda y \cdot x: \text { Bool } \rightarrow \text { Int }} \text { ABS }}{\vdash \lambda x \cdot(\lambda y \cdot x): \text { Int } \rightarrow(\text { Bool } \rightarrow \text { Int })} \text { ABS } \tag{Abs}
\end{equation*}
$$

- In a type system, the inference rules are designed s.t. for every pair $\vdash t: T$, there exists at most one proof tree
- t itself witnesses its own proof tree of $\vdash t: T$
- Intuition: A term itself represents a syntax tree. Put this tree upside down. Traverse the tree, thereby annotating types according to the inference rules. If this works out, you have the proof tree. Otherwise, there is none.

Preview: Type System as a Proof System

- You noticed the similarity between the two proof trees?

$$
\frac{p \in\{p, q\} \overline{p, q \vdash p} \text { Assump }}{p \vdash q \rightarrow p} \text { ImPINTRO }
$$

$\frac{\frac{(x: \text { Int }) \in\{x: \text { Int, } y: \text { Bool }\} \frac{\text { Ent }, y: \text { Bool } \vdash x: \text { Int }}{x: \text { ENV }}}{} \text { ABS }}{x: \text { Int } \vdash \lambda y \cdot x: \text { Bool } \rightarrow \text { Int }}$ ABS

- Is it be possible to encode a proof tree for a logic as a proof tree for a type system?

Preview: Type System as a Proof System

- You noticed the similarity between the two proof trees?

$$
\frac{p \in\{p, q\} \overline{p, q \vdash p} \text { ASSUMP }}{\frac{p \vdash q \rightarrow p}{\vdash p \rightarrow(q \rightarrow p)} \text { ImPInTRO }} \text { IMPINTRO }
$$

$$
\frac{\frac{(x: \text { Int }) \in\{x: \text { Int, } y: \text { Bool }\} \frac{1}{x: \text { Int, } y: \text { Bool } \vdash x: \text { Int }} \text { ENV }}{} \text { ABS }}{x: \text { Int } \vdash \lambda y \cdot x: \text { Bool } \rightarrow \text { Int }} \text { ABS }
$$

- Is it be possible to encode a proof tree for a logic as a proof tree for a type system?
- It is possible. It has been discovered in 1980 by Howard (Curry-Howard-Correspondence)

Preview: Type System as a Proof System

- You noticed the similarity between the two proof trees?

$$
\frac{p \in\{p, q\} \overline{p, q \vdash p} \text { ASSUMP }}{p \vdash q \rightarrow p} \text { ImPInTRO }
$$

$$
\frac{\frac{(x: \text { Int }) \in\{x: \text { Int }, y: \text { Bool }\} \frac{}{x: \text { Int }, y: \text { Bool } \vdash x: \text { Int }} \text { ENV }}{} \text { ABS }}{x: \text { Int } \vdash \lambda y \cdot x: \text { Bool } \rightarrow \text { Int }} \mathrm{ABS}
$$

- Is it be possible to encode a proof tree for a logic as a proof tree for a type system?
- It is possible. It has been discovered in 1980 by Howard (Curry-Howard-Correspondence)
- What do we need?

1. Goal: Find a way of proving a specification φ
2. We encode φ as a type T
3. We find a term t that is well-typed, i.e. $\vdash t: T$
4. But this means that t witnesses a proof tree for T
5. Thus we interpret t as a proof of T and therefore of φ !

Interactive Theorem Provers

- Proofs are manually written, potentially with some automatic proof-search aid
- Proofs are completely formal
- Proofs can be automatically checked
- You have to trust in the soundness of the proof checker
- Trust is usually established by providing a minimal base of the proof checker

Interactive Theorem Provers

- Proofs are manually written, potentially with some automatic proof-search aid
- Proofs are completely formal
- Proofs can be automatically checked
- You have to trust in the soundness of the proof checker
- Trust is usually established by providing a minimal base of the proof checker
- Examples: Coq, Isabelle, Agda
- May be based on type theory, but not necessarily
- Applications

1. Formalized Mathematics, e.g. Four-color theorem in 1976
2. Correctness Properties

- Certified C compiler CompCert, started in 2005
- Soundness of type systems
- Correctness of protocols
- Further theorems about formalisms

3. Generally: Verification where the system model or the property is "too complex" for automatic methods

Coq Programming

- Coq is an interactive theorem prover
- Main idea: Propositions as Types, Proofs as Terms (Curry-Howard-Correspondence)
- One can define
- Types (Propositions)
- Well-typed Terms (Proofs)
- The underlying language Gallina
- is a dependently-typed functional programming language
- implements the Calculus of Inductive Constructions
- is not Turing-complete (every function is total)

Getting started with Coq

1. Installation

- Win/Mac: Download from https://coq.inria.fr/
- Linux: We recommend installation via OPAM https://coq.inria.fr/opam/www/using.html

2. IDE

- Recommendation: Coq IDE, shipped with Coq (see screenshot)
- Popular plugin for Emacs: Proof General

Coq Programming (Inductive Data Types)

- An inductive data type definition introduces a new type and new well-typed terms

```
Inductive bool : Type :=
| true : bool
| false : bool.
Inductive nat : Type :=
| O : nat
| S : nat }->\mathrm{ nat.
```


Coq Programming (Inductive Data Types)

- An inductive data type definition introduces a new type and new well-typed terms

```
Inductive bool : Type :=
| true : bool
| false : bool.
Inductive nat : Type :=
| O : nat
| S : nat }->\mathrm{ nat.
```

- bool, nat are types
- true, false, O, S are value constructors

Coq Programming (Definitions)

- A Definition gives a name to a term

```
Definition two: nat := S(S O).
Definition three: nat := S(S (S O)).
```


Coq Programming (Definitions)

- A Definition gives a name to a term

```
Definition two: nat := S(S O).
Definition three: nat := S(S (S O)).
```

- Definitions can be unfolded, which is a kind of reduction
- Two terms are convertible (\equiv) if they reduce to the same term
- E.g., S two and three are convertible

```
    S two
\equivS(S(S O))
\equiv three
```


Coq Programming (Definitions)

- A Definition gives a name to a term

```
Definition two: nat := S(S O).
Definition three: nat := S(S (S O)).
```

- Definitions can be unfolded, which is a kind of reduction
- Two terms are convertible (\equiv) if they reduce to the same term
- E.g., S two and three are convertible

```
    S two
三S(S(S O))
# three
```

- Intuition: Convertibility is "syntactic equality up-to certain manipulations"

Coq Programming (Functions, Pattern Matching)

- We can define functions that use pattern matching

Definition negb : bool \rightarrow bool :=
fun $\mathrm{x} \Rightarrow$ match x with
| true \Rightarrow false
| false \Rightarrow true
end.

Coq Programming (Functions, Pattern Matching)

- We can define functions that use pattern matching

Definition negb : bool \rightarrow bool := fun $\mathrm{x} \Rightarrow$ match x with

$$
\begin{aligned}
& \text { | true } \Rightarrow \text { false } \\
& \text { | false } \Rightarrow \text { true } \\
& \text { end. }
\end{aligned}
$$

- fun $\mathrm{x} \Rightarrow \ldots$ introduces a function (anonymous, " λ ")
- match ... with | ... end pattern-matches

Coq Programming (Functions, Pattern Matching)

- We can define functions that use pattern matching

Definition negb : bool \rightarrow bool $:=$ fun $x \Rightarrow$ match x with

```
| true => false
| false }=>\mathrm{ true
end.
```

- fun $\mathrm{x} \Rightarrow \ldots$ introduces a function (anonymous, " λ ")
- match ... with | ... end pattern-matches
- Both constructs introduce a form of reduction and thus of convertibility

```
    negb true
\equiv (fun x = ...) true
\equiv match true with | true => false | ...
三 false
```


Coq Programming (Short Notation for Functions)

- Recall our function

```
Definition negb : bool }->\mathrm{ bool :=
    fun x m match x with
    | true => false
    | false # true
    end.
```

- We can use the following short notation

Definition negb (x: bool) : bool := match x with
| true \Rightarrow false
| false \Rightarrow true end.

Coq Programming (Type-Checking)

- In Coq, every term must be well-typed
- What does that mean?
- We write $\Gamma \vdash t: T$ and call it a (typing) judgement
- "Under context Γ, term t has type T "
- Context Γ is a list of items $t: T$

$$
\begin{aligned}
\text { E.g., we have } & x: \text { bool } \vdash \text { negb } x: \text { bool } \\
\ldots \text { but not } & x: \text { nat } \vdash \text { negb } x: \text { bool }
\end{aligned}
$$

Coq Programming (Type-Checking)

- In Coq, every term must be well-typed
- What does that mean?
- We write $\Gamma \vdash t: T$ and call it a (typing) judgement
- "Under context Γ, term t has type T "
- Context Γ is a list of items $t: T$

$$
\begin{aligned}
\text { E.g., we have } & x: \text { bool } \vdash \text { negb } x: \text { bool } \\
\text {...but not } & x: \text { nat } \vdash \text { negb } x: \text { bool }
\end{aligned}
$$

- Coq can try to find a type T for Γ, t (a.k.a. type inference, generally undecidable)

Coq Programming (Type-Checking)

- In Coq, every term must be well-typed
- What does that mean?
- We write $\Gamma \vdash t: T$ and call it a (typing) judgement
- "Under context Γ, term t has type T "
- Context Γ is a list of items $t: T$

$$
\begin{aligned}
\text { E.g., we have } & x: \text { bool } \vdash \text { negb } x: \text { bool } \\
\ldots \text {..but not } & x: \text { nat } \vdash \text { negb } x: \text { bool }
\end{aligned}
$$

- Coq can try to find a type T for Γ, t (a.k.a. type inference, generally undecidable)
- Coq decides for a given judgement whether it holds (a.k.a. type-checking)

Coq Programming (Type-Checking, Reducing in Coq)

- Type-infer terms and compute (reduce) terms
Check (negb true). \rightsquigarrow negb true: bool Compute (negb true). \rightsquigarrow false: bool
- Here, the context Γ is considered by Coq but not explicitly output

Coq Programming (Recursive Functions)

- We can define recursive functions

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O }\quad=>\textrm{n
    | S m' }=>S\mathrm{ (plus m' n)
    end.
```


Coq Programming (Recursive Functions)

- We can define recursive functions

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O }\quad=>
    | S m' }=>\mathrm{ S (plus m' n)
    end.
```

- Above was really a short notation for the following:

Definition plus $:$ nat \rightarrow nat \rightarrow nat $:=$ fix f (m n: nat) $:=$

```
match m with
| O m
    | S m' 
end.
```

Coq Programming (Recursion must be structural)

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O }\quad|\textrm{n
    | S m' }=>\mathrm{ S (plus m' n)
    end.
```

- Recursive functions in Coq always terminate because only structural recursion is allowed

Coq Programming (Recursion must be structural)

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O }\quad=>\textrm{n
    | S m' 
    end.
```

- Recursive functions in Coq always terminate because only structural recursion is allowed
- Structural recursion means that recursion is only applied to sub-structures
- Here: m^{\prime} is a sub-structure of S m '

Coq Programming (Recursion must be structural)

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O m
    | S m' = S (plus m' n)
    end.
```

- Recursive functions in Coq always terminate because only structural recursion is allowed
- Structural recursion means that recursion is only applied to sub-structures
- Here: m^{\prime} is a sub-structure of $\mathrm{S} \mathrm{m}^{\prime}$
- Why this restriction? Remember: Proofs are programs, and non-terminating proofs must be avoided! (more later)

Coq Programming (Prelude and Notation)

- Standard data types, functions, notation are pre-defined via the Prelude ${ }^{1}$
- This allows us to write a term like $3+2$ instead of plus $\mathrm{S}(\mathrm{S}(\mathrm{S} O)) \mathrm{S}(\mathrm{S} O)$.
- We use the nice notation from now on wherever possible

Coq Programming (Polymorphic Data Types, 1)

- It is often useful to parameterize a data type to avoid multiple definitions such as natList, boolList etc.

```
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X }->\mathrm{ list X }->\mathrm{ list X.
```


Coq Programming (Polymorphic Data Types, 1)

- It is often useful to parameterize a data type to avoid multiple definitions such as natList, boolList etc.

```
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X }->\mathrm{ list X }->\mathrm{ list X.
```

- We say that list is polymorphic in its parameter X

Coq Programming (Polymorphic Data Types, 1)

- It is often useful to parameterize a data type to avoid multiple definitions such as natList, boolList etc.

```
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X }->\mathrm{ list X }->\mathrm{ list X.
```

- We say that list is polymorphic in its parameter X
- We say that list is a type constructor (a function that constructs a type)

Coq Programming (Polymorphic Data Types, 1)

- It is often useful to parameterize a data type to avoid multiple definitions such as natList, boolList etc.

```
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X }->\mathrm{ list X }->\mathrm{ list X.
```

- We say that list is polymorphic in its parameter X
- We say that list is a type constructor (a function that constructs a type)
- Applying this type constructor yields
- list nat: Type
- list bool: Type
- ...

Coq Programming (Polymorphic Data Types, 2)
In the parameterized definition

```
Inductive list (X: Type) : Type :=
    | nil: list X
| cons: X }->\mathrm{ list X }->\mathrm{ list X.
```

... the parameter X can be "multiplied-out" to ...
Inductive list : Type \rightarrow Type :=
| nil: \forall (X: Type), list X
| cons: \forall (X: Type), $X \rightarrow$ list $X \rightarrow$ list X.

Coq Programming (Polymorphic Data Types, 2)

In the parameterized definition

```
Inductive list (X: Type) : Type :=
    | nil: list X
| cons: X }->\mathrm{ list X }->\mathrm{ list X.
```

... the parameter X can be "multiplied-out" to ...
Inductive list : Type \rightarrow Type :=
| nil: \forall (X: Type), list X
| cons: \forall (X: Type), $X \rightarrow$ list $X \rightarrow$ list X.

- The following judgements are introduced
\rightarrow list: Type \rightarrow Type
- nil: \forall (X: Type), list X
- cons: \forall (X: Type), $X \rightarrow$ list $X \rightarrow$ list X

Coq Programming (Polymorphic Data Types, 2)

In the parameterized definition

```
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X }->\mathrm{ list X }->\mathrm{ list X.
```

... the parameter X can be "multiplied-out" to ...

```
Inductive list : Type }->\mathrm{ Type :=
| nil: }\forall\mathrm{ (X: Type), list X
| cons: \forall (X: Type), X }->\mathrm{ list X }->\mathrm{ list X.
```

- The following judgements are introduced
- list: Type \rightarrow Type
- nil: \forall (X: Type), list X
- cons: \forall (X: Type), $X \rightarrow$ list $X \rightarrow$ list X
- The definitions are isomorphic (modulo technicalities), but the parameterized definition emphasises that the structure of list terms is independ. of the choice of the "type of content" X

Coq Programming (Implicit Parameters, 1)

```
Inductive list (X: Type) : Type :=
    nil: list X
    cons: X }->\mathrm{ list X }->\mathrm{ list X.
```

- Recall that this introduces the judgements

```
nil: }\forall\mathrm{ (X: Type), list X
cons: \forall(X: Type), X }->\mathrm{ list X }->\mathrm{ list X
```


Coq Programming (Implicit Parameters, 1)

```
Inductive list (X: Type) : Type :=
    nil: list X
    cons: X }->\mathrm{ list X }->\mathrm{ list X.
```

- Recall that this introduces the judgements
nil: \forall (X: Type), list X
cons: \forall (X: Type), $X \rightarrow$ list $X \rightarrow$ list X
- ... so the value constructors must be instantiated, e.g.
cons nat 42 (nil nat): list nat

Coq Programming (Implicit Parameters, 1)

```
Inductive list (X: Type) : Type :=
    nil: list X
    cons: X }->\mathrm{ list X }->\mathrm{ list X.
```

- Recall that this introduces the judgements

```
nil: }\forall(X: Type), list X
cons: }\forall(X: Type), X -> list X -> list X
```

- ... so the value constructors must be instantiated, e.g.
cons nat 42 (nil nat): list nat
- 42 is a nat, so X must be instantiated by nat. Can we let Coq infer this and simply write cons 42 nil: list nat instead?

Coq Programming (Implicit Parameters, 1)

```
Inductive list (X: Type) : Type :=
    nil: list X
    cons: X }->\mathrm{ list X }->\mathrm{ list X.
```

- Recall that this introduces the judgements

```
nil: \forall(X: Type), list X
cons: \forall(X: Type), X }->\mathrm{ list X }->\mathrm{ list X
```

- ... so the value constructors must be instantiated, e.g.
cons nat 42 (nil nat): list nat
- 42 is a nat, so X must be instantiated by nat. Can we let Coq infer this and simply write cons 42 nil: list nat instead?
- Yes! (See next slide)

Coq Programming (Implicit Parameters, 2)

- Recall our example term:

```
cons nat 42 (nil nat) : list nat
```

[^0]Coq Programming (Implicit Parameters, 2)

- Recall our example term:

```
cons nat 42 (nil nat) : list nat
```

- We can manually mark arguments as implicit or enable this by default via

```
Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: X }->\mathrm{ list X }->\mathrm{ list X.
```

${ }^{2}$ use Require Import Coq.Lists.List.

Coq Programming (Implicit Parameters, 2)

- Recall our example term:

```
cons nat 42 (nil nat) : list nat
```

- We can manually mark arguments as implicit or enable this by default via

Set Implicit Arguments. Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: $X \rightarrow$ list $X \rightarrow$ list X.

- X is strictly implicit for cons (alway inferrable)

[^1]Coq Programming (Implicit Parameters, 2)

- Recall our example term:

```
cons nat 42 (nil nat) : list nat
```

- We can manually mark arguments as implicit or enable this by default via

Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: $X \rightarrow$ list $X \rightarrow$ list X.

- X is strictly implicit for cons (alway inferrable)
- X is contextually implicit for nil (sometimes inferrable)

[^2]
Coq Programming (Implicit Parameters, 2)

- Recall our example term:

```
cons nat 42 (nil nat) : list nat
```

- We can manually mark arguments as implicit or enable this by default via

Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
\mid cons: $X \rightarrow$ list $X \rightarrow$ list X.

- X is strictly implicit for cons (alway inferrable)
- X is contextually implicit for nil (sometimes inferrable)
- This allows to write the example term as:

```
cons 42 nil : list nat
```

${ }^{2}$ use Require Import Coq.Lists.List.

Coq Programming (Implicit Parameters, 2)

- Recall our example term:

```
cons nat 42 (nil nat) : list nat
```

- We can manually mark arguments as implicit or enable this by default via

Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
\mid cons: $X \rightarrow$ list $X \rightarrow$ list X.

- X is strictly implicit for cons (alway inferrable)
- X is contextually implicit for nil (sometimes inferrable)
- This allows to write the example term as:
cons 42 nil : list nat
- But we lack the context to infer nil : list nat

[^3]
Coq Programming (Implicit Parameters, 2)

- Recall our example term:
cons nat 42 (nil nat) : list nat
- We can manually mark arguments as implicit or enable this by default via

Set Implicit Arguments.
Set Contextual Implicit.
Inductive list (X: Type) : Type :=
| nil: list X
| cons: $X \rightarrow$ list $X \rightarrow$ list X.

- X is strictly implicit for cons (alway inferrable)
- X is contextually implicit for nil (sometimes inferrable)
- This allows to write the example term as:
cons 42 nil : list nat
- But we lack the context to infer nil : list nat
\rightarrow There is further notation ${ }^{2}$. $42:$:nil : list nat ${ }^{2}$ use Require Import Coq.Lists.List.

Coq Programming (Implicit Parameters, 3)

- Why do we have to bother about explicit parameters in expressions?
- In standard programming languages, parameters in terms can be simply deduced by the type checker and are therefore implicit, i.e. they are omitted in terms
- Here however, parameters are more subtle and cannot always be deduced
- Take-away: If we are using the usual programming constructs, we just use the options

```
Set Implicit Arguments.
Set Contextual Implicit.
```

and don't have to care about the majority of parameters!

Propositions as Types

The Idea, 1

- We have seen a fairly standard functional programming language (with restricted recursion)

The Idea, 1

- We have seen a fairly standard functional programming language (with restricted recursion)
- But wasn't Coq about giving proofs of propositions about programs?

The Idea, 1

- We have seen a fairly standard functional programming language (with restricted recursion)
- But wasn't Coq about giving proofs of propositions about programs?
- Roadmap: We add very few features to the language and show how we can prove propositions within the language, as opposed to using some meta framework

The Idea, 1

- We have seen a fairly standard functional programming language (with restricted recursion)
- But wasn't Coq about giving proofs of propositions about programs?
- Roadmap: We add very few features to the language and show how we can prove propositions within the language, as opposed to using some meta framework
- We need to establish the following mechanisms:
- A proposition (logical statement) is encoded as a type
- A proof of a proposition is encoded as a term of that type

The Idea, 1

- We have seen a fairly standard functional programming language (with restricted recursion)
- But wasn't Coq about giving proofs of propositions about programs?
- Roadmap: We add very few features to the language and show how we can prove propositions within the language, as opposed to using some meta framework
- We need to establish the following mechanisms:
- A proposition (logical statement) is encoded as a type
- A proof of a proposition is encoded as a term of that type
- The idea of using propositions as types is also called Curry-Howard-Correspondence

The Idea, 2

Spoilers:

Implication $P \rightarrow Q$
Conjunction $P \wedge Q$
Disjunction $P \vee Q$
Top T
Bottom \perp
Univ. Qu. $\forall(x: A), P(x) \quad \cong$ -
Exis. Qu. $\exists(x: A), P(x) \cong \Sigma$-types
Modus Ponens:
From $P \rightarrow Q$ and P one deduces Q
\simeq Unit type 1
$\tilde{=}$ Empty type 0
$\approx \Pi$-types
$\simeq=$-types
$\tilde{=}$ Funct. type $P \rightarrow Q$
\cong Product type $P \times Q$
\simeq Sum type $P+Q$
\cong Function application: $\mathrm{f}: ~ \mathrm{P} \rightarrow \mathrm{Q}$ and $\mathrm{p}: ~ \mathrm{P}$ gives $f \mathrm{p}$: Q

There is a proof tree for $P \cong$ There is a term t such that t : P

Top and Bottom

- Let's define the proposition \top ("truth")
- There should be a proof for T

> Inductive True : Prop :=

I : True.

Top and Bottom

- Let's define the proposition \top ("truth")
- There should be a proof for T

Inductive True : Prop := I : True.

- Let's define the proposition \perp ("falsity")
- There should be no proof for \perp

Inductive False : Prop :=.

Top and Bottom

- Let's define the proposition \top ("truth")
- There should be a proof for T

Inductive True : Prop :=

```
    I : True.
```

- Let's define the proposition \perp ("falsity")
- There should be no proof for \perp

```
Inductive False : Prop :=.
```

- In Coq, there is a special type universe for propositions, called Prop (more about universes later)
- From now on, we write T for True and \perp for False

Conjunction

- We now come to our first connective, conjunction

```
Inductive and (A B: Prop) : Prop :=
    conj : A }->\textrm{B}->\mathrm{ and A B.
```


Conjunction

- We now come to our first connective, conjunction
Inductive and (A B: Prop) : Prop := conj $: A \rightarrow B \rightarrow$ and $A B$.
- and is a type constructor (better: Prop constructor):
- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for conj)
- There is notation $A \wedge B$ for and $A B$

Conjunction

- We now come to our first connective, conjunction

Inductive and (A B: Prop) : Prop := conj $: A \rightarrow B \rightarrow$ and $A B$.

- and is a type constructor (better: Prop constructor):
- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for conj)
- There is notation $A \wedge B$ for and $A B$
- How do you prove $A \wedge B$?

Conjunction

- We now come to our first connective, conjunction

Inductive and (A B: Prop) : Prop :=
conj $: A \rightarrow B \rightarrow$ and $A B$.

- and is a type constructor (better: Prop constructor):
- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for conj)
- There is notation $A \wedge B$ for and $A B$
- How do you prove $A \wedge B$?
- Give proofs a : A and b : B and apply conj to them

Conjunction

- We now come to our first connective, conjunction

conj : A $\rightarrow B \rightarrow$ and $A B$.
- and is a type constructor (better: Prop constructor):
- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for conj)
- There is notation $A \wedge B$ for and $A B$
- How do you prove $A \wedge B$?
- Give proofs a : A and b: B and apply conj to them
- Example: Prove $T \wedge \top$

Definition t_and_t: $\top \wedge \top$:= conj I I.

Disjunction

- We now come to our second connective, disjunction

```
Inductive or (A B: Prop) : Prop :=
    | Or_introl : A ->or A B
    | Or_intror : B ->or A B.
```


Disjunction

- We now come to our second connective, disjunction

Inductive or (A B: Prop) : Prop :=
| or_introl : $A \rightarrow$ or $A B$
| or_intror : $B \rightarrow$ or $A B$.

- or is a type constructor (better: Prop constructor):
- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for or_introl, or_intror)
- There is notation $A \vee B$ for or $A B$

Disjunction

- We now come to our second connective, disjunction

Inductive or (A B: Prop) : Prop :=
| or_introl : A \rightarrow or A B
| or_intror : B \rightarrow or A B.

- or is a type constructor (better: Prop constructor):
- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for or_introl, or_intror)
- There is notation $A \vee B$ for or $A B$
- How do you prove A \vee B?

Disjunction

- We now come to our second connective, disjunction

Inductive or (A B: Prop) : Prop :=
| or_introl : A \rightarrow or A B
| or_intror : B or A B.

- or is a type constructor (better: Prop constructor):
- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for or_introl, or_intror)
- There is notation $A \vee B$ for or $A B$
- How do you prove $A \vee B$?
- Prove a: A and apply or_introl or prove b: B and apply or_intror

Disjunction

- We now come to our second connective, disjunction

Inductive or (A B: Prop) : Prop :=

```
    | or_introl : A -> or A B
    | or_intror : B }->\mathrm{ or A B.
```

- or is a type constructor (better: Prop constructor):
- Given two Prop's, it establishes a new Prop
- The two Prop's are parameters (implicit for or_introl, or_intror)
- There is notation $A \vee B$ for or $A B$
- How do you prove $A \vee B$?
- Prove a: A and apply or_introl or prove b: B and apply or_intror
- Example: Prove $\perp \vee \top$

Definition f_or_t: $\perp \vee \top$:=
or_intror I.

Types, so far

- Let's recall what we know about types in Coq so far
- First, how are types formed? We saw 3 possibilities:

1a) Inductive types (atomic)

- bool
: Type
: Prop
- no proofs

1b) Inductive types (applied type constructors)

- list nat
- with value 1::2::3::nil, ...
- $\top \wedge \top$
- with proof conj I I
: Type
: Prop

Types, so far

2) Function Types
\rightarrow bool \rightarrow bool
: Type

- with values negb, (fun $x \Rightarrow x$), \ldots
\rightarrow nat \rightarrow nat \rightarrow nat
: Type
- with values plus, ...
$\rightarrow \perp \rightarrow \perp$
- with... a proof? Yes: fun $\mathrm{x} \Rightarrow \mathrm{x}$
- $\top \rightarrow \perp$
: Prop
- with... a proof? No.

3) Polymorphic Types

- \forall (X: Type), list X
: Type
- with one value: nil
- \forall (X: Type), $X \rightarrow$ list X
: Type
- with value fun (X: Type) (x: X) \Rightarrow x::x::x::nil
- \forall (A B: Prop), $A \rightarrow B \rightarrow A \wedge B$
: Prop
- with proof conj
- \forall ($\mathrm{P}: ~ P r o p), ~ T V P$
: Prop
- with... a proof? Yes: fun (_: Prop) \Rightarrow or_introl I
- Polymorphic types are function types that take types as arguments
- Polymorphic values are functions that take types as arguments

Polymorphic Propositions

- As we have seen, propositions can be polymorphic, too
- Example: For all propositions P, we have TVP

Polymorphic Propositions

- As we have seen, propositions can be polymorphic, too
- Example: For all propositions P, we have TVP
- We formulate and prove this proposition as follows:

```
Definition t_or_p:
    \forall (P: Prop), T V P :=
    fun (_: Prop) => or_introl I.
```


Polymorphic Propositions

- As we have seen, propositions can be polymorphic, too
- Example: For all propositions P, we have TVP
- We formulate and prove this proposition as follows:

Definition t_or_p:
\forall ($\mathrm{P}: ~ \mathrm{Prop}), ~ \top \vee \mathrm{P}:=$
fun (_: Prop) \Rightarrow or_introl I.

- Short notation:

```
Definition t_or_p:
    \forallP, TV P :=
    fun _ # or_introl I.
```


Polymorphic Propositions

- As we have seen, propositions can be polymorphic, too
- Example: For all propositions P, we have TVP
- We formulate and prove this proposition as follows:

Definition t_or_p:
\forall ($\mathrm{P}: ~ \mathrm{Prop}), ~ \top \vee \mathrm{P}:=$
fun (_: Prop) \Rightarrow or_introl I.

- Short notation:

Definition t_or_p:
$\forall \mathrm{P}, \mathrm{T} \vee \mathrm{P}:=$
fun _ \Rightarrow or_introl I.

- The type is polymorphic in P

Polymorphic Propositions

- As we have seen, propositions can be polymorphic, too
- Example: For all propositions P, we have TVP
- We formulate and prove this proposition as follows:

Definition t_or_p:
\forall ($\mathrm{P}: ~ \mathrm{Prop}), ~ \top \vee \mathrm{P}:=$
fun (_: Prop) \Rightarrow or_introl I.

- Short notation:

```
Definition t_or_p:
    \forallP, TV P :=
    fun _ # or_introl I.
```

- The type is polymorphic in P
- The proof is polymorphic in P

Implication

- We now come to our third logical connective, implication

Implication

- We now come to our third logical connective, implication
- You have seen it, as it is already built-in: An implication is a function type!

Implication

- We now come to our third logical connective, implication
- You have seen it, as it is already built-in: An implication is a function type!
- Example: Prove that for all propositions P, we have $\mathrm{P} \rightarrow \mathrm{T} \wedge \mathrm{P}$.

Definition true_p:
$\forall(P: P r o p), P \rightarrow(T \wedge P):=$
fun ($\mathrm{P}:$ Prop) ($\mathrm{p}: ~ P$) \Rightarrow conj I p.

Implication

- We now come to our third logical connective, implication
- You have seen it, as it is already built-in: An implication is a function type!
- Example: Prove that for all propositions P, we have $\mathrm{P} \rightarrow \mathrm{T} \wedge \mathrm{P}$.

Definition true_p:

```
\forall (P: Prop), P }->(T\wedge P) :
```

fun ($\mathrm{P}:$ Prop) ($\mathrm{p}: \mathrm{P}$) \Rightarrow conj I p .

- Short notation:

Definition true_p:
$\forall(P: P r o p), P \rightarrow(T \wedge P):=$
fun P p conj I p.

Proving with Tactics, 1

- A conjunction can be proven as follows

```
Definition t_and_t: \top ^ \top :=
    conj I I.
```


Proving with Tactics, 1

- A conjunction can be proven as follows

Definition t_and_t: $\top \wedge \top$:= conj I I.

- We call the value of a proposition a proof term

Proving with Tactics, 1

- A conjunction can be proven as follows

Definition t_and_t: $\top \wedge \top$:=
conj I I.

- We call the value of a proposition a proof term
- This proof term can equivalently be obtained via tactics

Lemma t_and_t: $\top \wedge \top$.
Proof.
apply conj.

- apply I.
- apply I.

Qed.

Proving with Tactics, 1

- A conjunction can be proven as follows

Definition t_and_t: $\top \wedge \top$:=
conj I I.

- We call the value of a proposition a proof term
- This proof term can equivalently be obtained via tactics

Lemma t_and_t: $\top \wedge \top$.
Proof.
apply conj.

- apply I.
- apply I.

Qed.

- Tactics generate proof terms

Proving with Tactics, 1

- A conjunction can be proven as follows

Definition t_and_t: $\top \wedge \top$:=
conj I I.

- We call the value of a proposition a proof term
- This proof term can equivalently be obtained via tactics

Lemma t_and_t: $\top \wedge \top$.
Proof.

$$
\begin{aligned}
& \text { apply conj. } \\
& \text { - apply I. } \\
& \text { - apply I. }
\end{aligned}
$$

Qed.

- Tactics generate proof terms
- Display proof term via Print t_and_t.

Proving with Tactics, 2

Lemma t_and_t: $\top \wedge \top$.
Proof.
apply conj.

- apply I.
- apply I.

Qed.

- Enables backwards-directed reasoning

Proving with Tactics, 2

Lemma t_and_t: $\top \wedge \top$.
Proof.
apply conj.

- apply I.
- apply I.

Qed.

- Enables backwards-directed reasoning
- The goal (proof obligation) is simplified/divided/reduced to smaller subgoals

Proving with Tactics, 2

Lemma t_and_t: $\top \wedge \top$.
Proof.
apply conj.

- apply I.
- apply I.

Qed.

- Enables backwards-directed reasoning
- The goal (proof obligation) is simplified/divided/reduced to smaller subgoals
- apply can be used to apply a value constructor conj

Proving with Tactics, 2

Lemma t_and_t: $T \wedge T$.
Proof.
apply conj.

- apply I.
- apply I.

Qed.

- Enables backwards-directed reasoning
- The goal (proof obligation) is simplified/divided/reduced to smaller subgoals
- apply can be used to apply a value constructor conj
- If the value constructor expects further arguments, further subgoals are generated

Proving with Tactics, 2

Lemma t_and_t: $\top \wedge \top$.
Proof.
apply conj.

- apply I.
- apply I.

Qed.

- Enables backwards-directed reasoning
- The goal (proof obligation) is simplified/divided/reduced to smaller subgoals
- apply can be used to apply a value constructor conj
- If the value constructor expects further arguments, further subgoals are generated
- This is the case in our example: We have two subgoals T and T

Tactic: exact

```
Lemma t_and_t: T ^丁.
Proof.
    exact (conj I I).
Qed.
```

- By exact, one can give an explicit proof term

Tactic: exact

Lemma t_and_t: $\top \wedge \top$.
Proof.
exact (conj I I).
Qed.

- By exact, one can give an explicit proof term
- In this example, we give the whole proof term just by a single exact, which is equivalent to the two other definitions of t_and_t

Tactic: intros

Lemma p_q_p: \forall ($\mathrm{P} Q:$ Prop), $\mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{P}$.
Proof.
intros P Q p q.
apply p.
Qed.

- By intros, arguments are assumed

Tactic: intros

Lemma p_q_p: \forall ($\mathrm{P} \mathrm{Q}:$ Prop), $\mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{P}$.
Proof.
intros P Q p q.
apply p.
Qed.

- By intros, arguments are assumed
- They are now available as hypotheses in the context Γ

Tactic: intros

Lemma p_q_p: \forall ($\mathrm{P} \mathrm{Q}:$ Prop), $\mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{P}$. Proof.
intros P Q p q.
apply p .
Qed.

- By intros, arguments are assumed
- They are now available as hypotheses in the context Γ
- Correspondence to proof terms: intros $\mathrm{x} y$. introduces fun $\mathrm{x} y \Rightarrow \ldots$

Tactic: destruct (1)

```
Lemma pq_p: \forall (P Q: Prop), P ^ Q -> P.
Proof.
    intros P Q H.
    destruct H as [p q].
    apply p.
Qed.
```

- By destruct, a hypothesis is case-analyzed

Tactic: destruct (1)

```
Lemma pq_p: \forall (P Q: Prop), P ^ Q -> P.
Proof.
    intros P Q H.
    destruct H as [p q].
    apply p.
Qed.
```

- By destruct, a hypothesis is case-analyzed
- In this example, there is only one case, conj

Tactic: destruct (1)

```
Lemma pq_p: \forall (P Q: Prop), P ^ Q 
Proof.
    intros P Q H.
    destruct H as [p q].
    apply p.
Qed.
```

- By destruct, a hypothesis is case-analyzed
- In this example, there is only one case, conj
- Correspondence to proof terms: Introduces match ... with conj p q \Rightarrow...

Tactics: destruct (2), left, right

```
Lemma pq_or_qp:
    \forall(P Q: Prop), P V Q }->\textrm{Q}\vee\textrm{P}
Proof.
    intros P Q H.
    destruct H as [p | q].
    - right. apply p.
    - left. apply q.
Qed.
```

- By destruct, a hypothesis is case-analyzed

Tactics: destruct (2), left, right

```
Lemma pq_or_qp:
    \forall(P Q: Prop), P V Q }->\textrm{Q}\vee\textrm{P}
Proof.
    intros P Q H.
    destruct H as [p | q].
    - right. apply p.
    - left. apply q.
Qed.
```

- By destruct, a hypothesis is case-analyzed
- For each case, there is a subgoal

Tactics: destruct (2), left, right

```
Lemma pq_or_qp:
    \forall(P Q: Prop), P V Q }->\textrm{Q}\vee\textrm{P}
Proof.
    intros P Q H.
    destruct H as [p | q].
    - right. apply p.
    - left. apply q.
Qed.
```

- By destruct, a hypothesis is case-analyzed
- For each case, there is a subgoal
- Correspondence to proof terms: Introduces match ... with | ... | ... \Rightarrow...
- By left (right), the first (second) constructor is selected
- Correspondence to proof terms: Introduces or_introl resp. or_intror

Tactic: split

Lemma and_comm:
\forall ($\mathrm{P} Q:$ Prop), $\mathrm{P} \wedge \mathrm{Q} \rightarrow \mathrm{Q} \wedge \mathrm{P}$. Proof. intros P Q H. destruct H as [p q]. split.

- apply q.
- apply p.

Qed.

- By split, a goal is split into subgoals

Tactic: split

Lemma and_comm:
\forall ($\mathrm{P} Q:$ Prop), $\mathrm{P} \wedge \mathrm{Q} \rightarrow \mathrm{Q} \wedge \mathrm{P}$. Proof.
intros P Q H.
destruct H as [p q].
split.

- apply q.
- apply p.

Qed.

- By split, a goal is split into subgoals
- For each case, there is a subgoal

Tactic: split

Lemma and_comm:

```
    \forall (P Q: Prop), P ^ Q 
```

Proof.
intros P Q H.
destruct H as [p q].
split.
- apply q.
- apply p.
Qed.

- By split, a goal is split into subgoals
- For each case, there is a subgoal
- Correspondence to proof terms: Introduces conj

Tactic: exfalso

Lemma false_proves_anything:
\forall (P : Prop),$~ \perp \rightarrow$ P.
Proof.
intros P f.
exfalso.
exact f.
Qed.

- exfalso replaces the current goal by \perp

Tactic: exfalso

Lemma false_proves_anything:
\forall ($\mathrm{P}:$ Prop),$\perp \rightarrow \mathrm{P}$.
Proof.
intros P f.
exfalso.
exact f.
Qed.

- exfalso replaces the current goal by \perp
- In other words, proving \perp suffices to prove any P

Tactic: exfalso

Lemma false_proves_anything:
\forall (P: Prop),$\perp \rightarrow$ P.
Proof.
intros P f.
exfalso.
exact f.
Qed.

- exfalso replaces the current goal by \perp
- In other words, proving \perp suffices to prove any P
- The correspondence to proof terms is very interesting. Recall that \perp is an empty type. What happens if we assume a proof of \perp (as in the example)? As with every value, we can case-analyze it and prove P for every case. But there are no cases, so we are done!

Tactic: exfalso

Lemma false_proves_anything:
\forall (P: Prop),$\perp \rightarrow$ P.
Proof.
intros P f.
exfalso.
exact f.
Qed.

- exfalso replaces the current goal by \perp
- In other words, proving \perp suffices to prove any P
- The correspondence to proof terms is very interesting. Recall that \perp is an empty type. What happens if we assume a proof of \perp (as in the example)? As with every value, we can case-analyze it and prove P for every case. But there are no cases, so we are done!
- Crucial part of the corresponding proof term: match f with (nothing here) end

Tactics: simpl, reflexivity

Lemma negb_tf: negb true = false.
Proof.

```
    simpl.
```

 reflexivity.
 Qed.

- By simpl, a goal is maximally reduced

Tactics: simpl, reflexivity

Lemma negb_tf: negb true = false. Proof.

```
    simpl.
```

 reflexivity.
 Qed.

- By simpl, a goal is maximally reduced
- This yields the subgoal false = false

Tactics: simpl, reflexivity

Lemma negb_tf: negb true = false. Proof.

```
    simpl.
```

 reflexivity.
 Qed.

- By simpl, a goal is maximally reduced
- This yields the subgoal false = false
- By reflexivity, we can prove such a goal

Tactics: simpl, reflexivity

```
Lemma negb_tf: negb true = false.
Proof.
    simpl.
    reflexivity.
Qed.
```

- By simpl, a goal is maximally reduced
- This yields the subgoal false = false
- By reflexivity, we can prove such a goal
- How is = encoded as a type and what proof term does reflexivity introduce?

Tactics: simpl, reflexivity

Lemma negb_tf: negb true = false. Proof.
simpl.
reflexivity.
Qed.

- By simpl, a goal is maximally reduced
- This yields the subgoal false = false
- By reflexivity, we can prove such a goal
- How is = encoded as a type and what proof term does reflexivity introduce?
- The answer is "as an inductive type" but the details are not relevant at this point

Negation

- We now come to our fourth logical connective, negation

Negation

- We now come to our fourth logical connective, negation
- You have seen it, as it is already built-in: The negation of a proposition P is the implication $P \rightarrow \perp$

Negation

- We now come to our fourth logical connective, negation
- You have seen it, as it is already built-in: The negation of a proposition P is the implication $P \rightarrow \perp$
- We use the notation $\sim \mathrm{P}$ for $\mathrm{P} \rightarrow \perp$

Negation

- We now come to our fourth logical connective, negation
- You have seen it, as it is already built-in: The negation of a proposition P is the implication $P \rightarrow \perp$
- We use the notation $\sim P$ for $P \rightarrow \perp$
- Example: Prove that for all propositions P, we have $P \rightarrow \sim(\sim P)$.

Lemma not_not:
\forall ($\mathrm{P}:$ Prop), $\mathrm{P} \rightarrow \sim(\sim \mathrm{P})$.
Proof.
intros P p.
intros H .
apply H.
exact p.
Qed.

Types that Depend on Terms

- Recall polymorphic types, i.e. types that depend on types

3) Polymorphic Types

- \forall (X: Type), list X
: Type
- with value nil
- \forall (P : Prop), TVP
: Prop
- with proof fun (_: Prop) \Rightarrow or_introl I

Types that Depend on Terms

- Recall polymorphic types, i.e. types that depend on types

3) Polymorphic Types

- \forall (X: Type), list X
: Type
- with value nil
- \forall (P: Prop), TVP
: Prop
- with proof fun (_: Prop) \Rightarrow or_introl I
- Types can also depend on terms

4) Dependent Types

- \forall (b: bool), negb (negb b) $=\mathrm{b}$
: Prop
- \forall (n : nat), $0+\mathrm{n}=\mathrm{n}$
- \forall (n: nat), $n+0=n$
: Prop
: Prop
: Prop

Types that Depend on Terms

- Recall polymorphic types, i.e. types that depend on types

3) Polymorphic Types

- \forall (X: Type), list X
: Type
- with value nil
- \forall (P: Prop), TVP
: Prop
- with proof fun (_: Prop) \Rightarrow or_introl I
- Types can also depend on terms

4) Dependent Types
$\rightarrow \forall$ (b: bool), negb (negb b) $=\mathrm{b}$: Prop

- \forall (n: nat), $0+n=n \quad$: Prop
- \forall (n: nat), $n+0=n$
: Prop
- \forall (mn: nat), $m+n=n+m$
: Prop
- Roadmap: We prove all of the above properties!

Type Universes

- The type of a type is called a type universe: Either Type or Prop ${ }^{3}$

bool : Type	T		: Prop
nat : Type	$10=4$: Prop	
		\forall (P: Prop),$~ T \vee P$: Prop

${ }^{3}$ This is a simplified view that is sufficient for now.

Type Universes

- The type of a type is called a type universe: Either Type or Prop ${ }^{3}$

bool : Type	T		: Prop
nat : Type	$10=4$: Prop	
		$\forall(P:$ Prop $), ~ T \vee P$: Prop

- A type of Type (e.g. nat) contains data values

0	$:$ nat \quad true : bool	
$S O$: nat \quad false : bool	
plus	: nat \rightarrow nat \rightarrow nat	

${ }^{3}$ This is a simplified view that is sufficient for now.

Type Universes

- The type of a type is called a type universe: Either Type or Prop ${ }^{3}$

bool : Type	T		: Prop
nat : Type	$10=4$: Prop	
		\forall (P: Prop),$~ T \vee P$: Prop

- A type of Type (e.g. nat) contains data values

0	$:$ nat \quad true : bool	
$S O$: nat	false : bool
plus	: nat \rightarrow nat \rightarrow nat	

- A type of Prop (e.g. \top) contains proofs

```
I : T
(fun (_: Type) => or_introl I)
    : \forall (P: Prop), T V P
```

${ }^{3}$ This is a simplified view that is sufficient for now.

Back to Booleans, 1

Definition negb (x: bool) : bool := match x with
| true \Rightarrow false
| false \Rightarrow true end.

- Let's prove negb (negb b) $=\mathrm{b}$ for all b

Back to Booleans, 1

Definition negb (x: bool) : bool :=
match x with
| true \Rightarrow false
| false \Rightarrow true
end.

- Let's prove negb (negb b) = b for all b
- The term negb (neg b) does not reduce

Back to Booleans, 1

Definition negb (x: bool) : bool :=

```
match x with
    | true => false
    | false }=>\mathrm{ true
end.
```

- Let's prove negb (negb b) = b for all b
- The term negb (neg b) does not reduce
- Why not? negb performs pattern matching, but since we don't know anything about b (it could be any bool), we don't know which case will match

Back to Booleans, 1

Definition negb (x: bool) : bool :=

```
match x with
    | true => false
    false }=>\mathrm{ true
end.
```

- Let's prove negb (negb b) = b for all b
- The term negb (neg b) does not reduce
- Why not? negb performs pattern matching, but since we don't know anything about b (it could be any bool), we don't know which case will match
- But there are only two possible values for b. So let's do a case analysis and prove every case!

1. b is true. Then negb (negb true) reduces to true.
2. b is false. Then negb (negb false) reduces to false.

Back to Booleans, 2

```
Definition negb (x: bool) : bool :=
    match x with
    | true => false
    | false # true
    end.
```

- We have all the tools to prove this in Coq

Back to Booleans, 2

```
Definition negb (x: bool) : bool :=
    match x with
    | true => false
    | false # true
    end.
```

- We have all the tools to prove this in Coq

Lemma negb_inverse:
\forall (b: bool), negb (negb b) $=\mathrm{b}$.
Proof.
intros b.
destruct b .

- simpl. reflexivity.
- simpl. reflexivity.

Qed.

Back to Natural Numbers

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O m
    | S m' 
    end.
```

- We can easily prove that $0+\mathrm{n}=\mathrm{n}$ for all n

Back to Natural Numbers

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O }\quad=>
    | S m' 
    end.
```

- We can easily prove that $0+n=n$ for all n
- Because: $0+\mathrm{n}$ reduces to n by definition of plus

Back to Natural Numbers

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O }\quad|\textrm{n
    | S m' }=>\mathrm{ S (plus m' n)
    end.
```

- We can easily prove that $0+n=n$ for all n
- Because: $0+n$ reduces to n by definition of plus

Lemma O_plus_n: \forall (n: nat), $0+n=n$. Proof.
intros n .
simpl.
reflexivity.
Qed.

Natural induction

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O }\quad=>\textrm{n
    | S m' 
    end.
```

- What about the other way round, $\mathrm{m}+0=\mathrm{m}$?

Natural induction

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O }\quad|\textrm{n
    | S m' 
    end.
```

- What about the other way round, $m+0=m$?
- This should hold, but we cannot reduce $m+0$

Natural induction

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O }\quad=>\textrm{n
    | S m' 
    end.
```

- What about the other way round, $m+0=m$?
- This should hold, but we cannot reduce $m+0$
- Why not? plus pattern-matches on the first argument, but since we don't know anything about m (it could be any number), we don't know which case will match

Natural induction

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O }\quad=>\textrm{n
    | S m' 
    end.
```

- What about the other way round, $m+0=m$?
- This should hold, but we cannot reduce $m+0$
- Why not? plus pattern-matches on the first argument, but since we don't know anything about m (it could be any number), we don't know which case will match
- "any number" rings a bell: Proof by Natural Induction!

Natural induction

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O }\quad=>\textrm{n
    | S m' 
    end.
```

- What about the other way round, $m+0=m$?
- This should hold, but we cannot reduce $m+0$
- Why not? plus pattern-matches on the first argument, but since we don't know anything about m (it could be any number), we don't know which case will match
- "any number" rings a bell: Proof by Natural Induction!
- Base case. To show: $0+0=0$. By definition.

Natural induction

```
Fixpoint plus (m n: nat) : nat :=
    match m with
    | O m
    | S m' = S (plus m' n)
    end.
```

- What about the other way round, $m+0=m$?
- This should hold, but we cannot reduce $m+0$
- Why not? plus pattern-matches on the first argument, but since we don't know anything about m (it could be any number), we don't know which case will match
- "any number" rings a bell: Proof by Natural Induction!
- Base case. To show: $0+0=0$. By definition.
- Inductive case. Let IH be $m+0=m$. To show:
$(S m)+0=S m$. But this is by def. of plus convertible to $S(m+0)=S m$. Now use IH, so we have to show $S m=S m$ which holds by reflexivity of $=$.

Natural induction in Coq, 1

- Let's do the same proof, but in Coq

Natural induction in Coq, 1

- Let's do the same proof, but in Coq

```
Lemma n_plus_o: }\forall\mathrm{ (n: nat), n + 0 = n.
Proof.
    intros n.
    induction n.
    - simpl. reflexivity.
    - simpl. rewrite IHn. reflexivity.
Qed.
```

- induction n does a case-analysis on n (like destruct), but provides an additional inductive hypothesis

Natural induction in Coq, 1

- Let's do the same proof, but in Coq

```
Lemma n_plus_o: }\forall\mathrm{ (n: nat), n + 0 = n.
Proof.
    intros n.
    induction n.
    - simpl. reflexivity.
    - simpl. rewrite IHn. reflexivity.
Qed.
```

- induction n does a case-analysis on n (like destruct), but provides an additional inductive hypothesis
- rewrite IHn uses the equation IHn to substitute a subterm in the current goal

Natural induction in Coq, 2

- Remember the very first property we wanted to show?

$$
\mathrm{m}+\mathrm{n}=\mathrm{n}+\mathrm{m} \text { for all } \mathrm{m}, \mathrm{n}
$$

Natural induction in Coq, 2

- Remember the very first property we wanted to show?

$$
m+n=n+m \text { for all } m, n
$$

- Proof by induction over m.
- Base case. To show: $0+n=n+0$. By our last lemma, we know $n+0=n$; by definition of plus we know $0+n=n$; thus we are done.
- Inductive case. Let IH be $m+n=n+m$. To show: $(S m)+n=n+(S m)$. This goal reduces to $S(m+n)=n+(S m)$. By the IH, we can reduce the goal to $S(n+m)=n+(S m)$. Here we have the same problem as with proving $n+0=n$: It does not hold by definition, because plus pattern-matches on the first argument. Thus we prove this as an extra lemma, after which the proof is completed.

Natural induction in Coq, 3

- Let's prove the little lemma
$m+(S n)=S(m+n)$ for all m, n
... by induction on m

Natural induction in Coq, 3

- Let's prove the little lemma

$$
m+(S n)=S(m+n) \text { for all } m, n
$$

... by induction on m

```
Lemma m_plus_S:
    \forall (m n: nat), m+(S n) =S (m+n).
Proof.
    intros m n.
    induction m.
    - simpl. reflexivity.
    - simpl. rewrite IHm. reflexivity.
Qed.
```


Natural induction in Coq, 4

- Now we can prove commutativity of addition in Coq, following the proof sketch given before

Natural induction in Coq, 4

- Now we can prove commutativity of addition in Coq, following the proof sketch given before

```
Lemma plus_comm:
    \forall (m n: nat), m+n = n+m.
Proof.
    intros m.
    induction m.
    - intros. rewrite m_plus_O.
    simpl. reflexivity.
    - intros n. simpl. rewrite IHm.
    rewrite m_plus_S. reflexivity.
Qed.
```


Induction in Coq: Outlook, 1

- We know the principle of natural induction from maths
${ }^{4}$ For further reading: " x is-a-substructure-of y " is well-founded

Induction in Coq: Outlook, 1

- We know the principle of natural induction from maths
- Why have we considered this principle a sound proof method?
${ }^{4}$ For further reading: " x is-a-substructure-of y " is well-founded

Induction in Coq: Outlook, 1

- We know the principle of natural induction from maths
- Why have we considered this principle a sound proof method?
- Because our objects (here: natural numbers) are constructed out of finitely many steps ${ }^{4}$. We can view a proof of induction as a recipe on how to obtain a proof for any concrete number n.
${ }^{4}$ For further reading: " x is-a-substructure-of y " is well-founded

Induction in Coq: Outlook, 1

- We know the principle of natural induction from maths
- Why have we considered this principle a sound proof method?
- Because our objects (here: natural numbers) are constructed out of finitely many steps ${ }^{4}$. We can view a proof of induction as a recipe on how to obtain a proof for any concrete number n.
- Example: How do we prove $3+0=3$?
- Use Inductive Case, but need to prove $2+0=2$. How?
- Use Inductive Case, but need to prove $1+0=1$. How?
- Use Inductive Case, but need to prove $0+0=0$. How?
- Use Base Case.
${ }^{4}$ For further reading: " x is-a-substructure-of y " is well-founded

Induction in Coq: Outlook, 1

- We know the principle of natural induction from maths
- Why have we considered this principle a sound proof method?
- Because our objects (here: natural numbers) are constructed out of finitely many steps ${ }^{4}$. We can view a proof of induction as a recipe on how to obtain a proof for any concrete number n.
- Example: How do we prove $3+0=3$?
- Use Inductive Case, but need to prove $2+0=2$. How?
- Use Inductive Case, but need to prove $1+0=1$. How?
- Use Inductive Case, but need to prove $0+0=0$. How?
- Use Base Case.
- Doesn't this proof construction look a lot like... a recursive program?
${ }^{4}$ For further reading: " x is-a-substructure-of y " is well-founded

Induction in Coq: Outlook, 2

- Example: How do we prove $3+0=3$?
- Use Inductive Case, but need to prove $2+0=2$. How?
- Use Inductive Case, but need to prove $1+0=1$. How?
- Use Inductive Case, but need to prove $0+0=0$. How?
- Use Base Case.
${ }^{5}$ You can take a look e.g. via Print nat_ind.

Induction in Coq: Outlook, 2

- Example: How do we prove $3+0=3$?
- Use Inductive Case, but need to prove $2+0=2$. How?
- Use Inductive Case, but need to prove $1+0=1$. How?
- Use Inductive Case, but need to prove $0+0=0$. How?
- Use Base Case.
- In Coq, an inductive proof is a recursive function
${ }^{5}$ You can take a look e.g. via Print nat_ind.

Induction in Coq: Outlook, 2

- Example: How do we prove $3+0=3$?
- Use Inductive Case, but need to prove $2+0=2$. How?
- Use Inductive Case, but need to prove $1+0=1$. How?
- Use Inductive Case, but need to prove $0+0=0$. How?
- Use Base Case.
- In Coq, an inductive proof is a recursive function
- Every Inductive type has this essential property that each object is constructed out of finitely many steps
${ }^{5}$ You can take a look e.g. via Print nat_ind.

Induction in Coq: Outlook, 2

- Example: How do we prove $3+0=3$?
- Use Inductive Case, but need to prove $2+0=2$. How?
- Use Inductive Case, but need to prove $1+0=1$. How?
- Use Inductive Case, but need to prove $0+0=0$. How?
- Use Base Case.
- In Coq, an inductive proof is a recursive function
- Every Inductive type has this essential property that each object is constructed out of finitely many steps
- There is an induction principle for every type, and it is automatically generated ${ }^{5}$
${ }^{5}$ You can take a look e.g. via Print nat_ind.

Summary

- Coq is a programming language (with restricted recursion)

Summary

- Coq is a programming language (with restricted recursion)
- Data is defined inductively, i.e. all values are finite objects

Summary

- Coq is a programming language (with restricted recursion)
- Data is defined inductively, i.e. all values are finite objects
- Functions are defined recursively over this inductive structure

Summary

- Coq is a programming language (with restricted recursion)
- Data is defined inductively, i.e. all values are finite objects
- Functions are defined recursively over this inductive structure
- The Curry-Howard-Correspondence provides clever tricks to encode propositions as types

Summary

- Coq is a programming language (with restricted recursion)
- Data is defined inductively, i.e. all values are finite objects
- Functions are defined recursively over this inductive structure
- The Curry-Howard-Correspondence provides clever tricks to encode propositions as types
- A proposition is proven by a well-typed proof term

Summary

- Coq is a programming language (with restricted recursion)
- Data is defined inductively, i.e. all values are finite objects
- Functions are defined recursively over this inductive structure
- The Curry-Howard-Correspondence provides clever tricks to encode propositions as types
- A proposition is proven by a well-typed proof term
- A proof by induction is a recipe for constructing proofs for any element
- This recipe is a recursive function!

Summary

- Coq is a programming language (with restricted recursion)
- Data is defined inductively, i.e. all values are finite objects
- Functions are defined recursively over this inductive structure
- The Curry-Howard-Correspondence provides clever tricks to encode propositions as types
- A proposition is proven by a well-typed proof term
- A proof by induction is a recipe for constructing proofs for any element
- This recipe is a recursive function!
- Tactics assist the user in finding a proof term

Literature

[1] B. Pierce et al., Software Foundations https://softwarefoundations.cis.upenn.edu/ (Free online book series)
[1] G. Smolka, Lecture Notes of Introduction to Computational Logic
https://www.ps.uni-saarland.de/courses.html

[^0]: ${ }^{2}$ use Require Import Coq.Lists.List.

[^1]: ${ }^{2}$ use Require Import Coq.Lists.List.

[^2]: ${ }^{2}$ use Require Import Coq.Lists.List.

[^3]: ${ }^{2}$ use Require Import Coq.Lists.List.

